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Theory of Quantum Conduction through a Constriction
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A theory of ballistic conduction through a constriction is developed which predicts a steplike structure
with amplitude e2/h in the conductance as a function of Fermi energy or width. For a sharp (abrupt)
constriction the steps are only quantized to 1 part in 10 at T=O. Disorder destroys the steps and they
are modulated by novel resonant structure in certain regimes of shape and temperature.

PACS numbers: 73.20.Dx, 72.20.Dp, 73.40.Lq

Recent experiments' have observed a striking new
effect when measuring the low-temperature conductance
of a high-mobility (ballistic) two-dimensional electron
system separated into two regions by a gate which
creates a constriction of variable width. The conduc-
tance as a function of the width of the constriction was
found to rise in a long series of rather sharp steps of
magnitude e /h (per spin). This effect is of general in-
terest for at least two reasons. First, it is reminiscent of
the normal quantum Hall effect (but note it occurs even
in the absence of a B field), thus it naturally raises the
question of how precise the "quantization" of the con-
ductance is in the plateau regions. Second, the effect
sheds light on questions concerning the physically
relevant version of the Landauer formula (relating con-
ductance to the scattering matrix of the disordered con-
ductor) for two probe measu-rements, and it supports the
view that in this case the dimensionless conductance,
g =G/(e /h), is best described by the formula4

g =Tr(tt t),
where t is the transmission matrix through the "sample, "
evaluated at the Fermi energy.

Although Eq. (I) predicts a finite resistance for a
"perfect" conductor, it is now understood that if an ex-
periment measures the ratio of the induced current to the
chemical potential difference between the "reservoirs"
serving as current source and current sink, then Eq. (I)
applies. The resistance when the sample is perfectly
transmitting can be regarded as an ideal contact resis-
tance occurring at the interface between the sample and
the reservoirs, as first pointed out by Imry. In the sim-
plest model, discussed in Ref. 1, t refers to the transmis-
sion matrix of the constriction alone; in the ballistic limit
(ttt);J =8;, , and so g is equal to the number of propaga-
ting channels in the constriction, and increases by unity
in perfectly sharp steps each time a new channel opens
up. This argument, while useful in understanding the
origin of the effect, is inadequate to describe the ob-
served shape of the steps which are not perfectly sharp.
Moreover, since the real system is phase coherent on a
scale much longer than the constriction, to understand
the observability of the effect under experimental condi-

tions, one must treat correctly the impedance-matching
and mode-conversion behaviors at the interfaces between
the constriction and 2D regions. In the "adiabatic" limit
of an arbitrarily smoothly tapered constriction these
effects are almost negligible, and a recent WKB treat-
ment finds only exponentially small corrections to 0-
function steps, and no dependence on the length of the
constriction. We focus on the limit in which these
effects are most important, an abrupt interface between
wide and narrow regions, and find the striking result that
even here one obtains rather sharp steps.

We study a model (equivalent to a scalar waveguide
problem) consisting of two wide regions of width W,
separated by a constriction of width W'« W and length
L (the sample geometry is defined by hard-wall bound-
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FIG. 1. T„(A) for wide-narrow (WN) geometry. Solid line
is Ti in the mean-field approximation (MFA) [Eq. (3)l,
squares are T(A) [Eq. (4)l. Circles and crosses are numerical
results for T3 and T4, demonstrating scaling property of exact
T„(A). Dashed line is 1D model explained in text. Inset:
Schematic of the WN geometry and the threshold energies for
the corresponding regions; brace indicates the channels w con-
tributing to T„ in the MFA.
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when e'F »e„ the barrier is negligible and the transmis-
sion is maximal. More precisely, the unitarity relations
and the continuity of wave functions with energy imply
the following: (a) The total transmission from all the
modes w into a given mode n is T„=g

~ t„„~
~
t n ~

~ 1. (b) When eF —e„0,then
~ rnn ~

=1
and r „=t „=0for all w and rn, i.e., at threshold there
is no transmission or off-diagonal reflection. Threshold
for propagation of mode n can be crossed by increasing
either eF or W' so that e, (W')—:q„= (ntr/W') falls
below eF, thus it is natural to study T„as a function of
the variable d, —:(kF —q„)W'/tr = Jap W'/tr —n, which
can be regarded as measuring either the deviation of kF
or W' from threshold, in units of tr/W', or of XF/2, re-
spectively. T„(A) must rise to nearly unity for A«1 to
obtain sharp steps in g.

To solve for T„we write a wave function correspond-
ing to a particle with energy eF=q„+k incident in

mode w from the wide side at x ~ 0 as
FIG. 2. g(eF) for aspect ratios a=L/W' (W'=12 lattice

units). Solid lines are exact numerical results for abrupt tran-
sition, and dashed lines in the three lower curves are MFA re-
sults. Dashed line in top curve corresponds to tapering (to
W =48") as shown in the inset. Curves are vertically oA'set.

ary conditions). Such a linear problem can always be
solved exactly by discretization. A particularly Aexible
technique that we have employed is the recursive Green's
function method which allows us to solve for an ordered
or disordered constriction of any shape, although initially
we will focus on solving the model for the case of an
abrupt constriction (Figs. 1 and 2). While the true situ-
ation is somewhere in between the adiabatic and abrupt
limits, this model (which assumes that the "walls" creat-
ed by the gate are relatively well defined) is consistent
with the approximately equal spacing of the observed.
steps as a function of 8", and the recently observed ap-
pearance of resonant structure in the steps.

To understand the mode conversion that occurs at the
orifice, we begin by considering the simpler problem of
transmission from a wide semi-infinite waveguide (width

W), where the transverse modes are dense in energy,
abruptly connected to a narrow semi-infinite waveguide
(width W'«W), where they are very sparse in energy
(Fig. 1). Crudely one can understand the transmission
in this wide-narrow (WN) geometry by analogy to
above-barrier transmission in one dimension: As a mode
n (with threshold energy e„) of the narrow region passes
through eF, typically a mode w in the wide region must
give up longitudinal energy to propagate through the
constriction. When mode n is barely propagating
(eF ——e„) the longitudinal kinetic energy is very small
compared to the "barrier" (the mismatch of transverse
energies) and there is substantial reflection, whereas

@„(x,y) =g„(y)exp[ik„x]+ g r, , g, , (y)e xp[ik, , x]
v=1

if x~O,

e„(x,y) =0(W'/2 —
~y ~

) g tn„v „(y)exp[ik„x]
n=l

if x ~ 0, and match at the interface (x =0). The result-
ing equations can be combined to give

Z +nmtmw + kntnw 2kwanw &

m=1
(2)

a„=(W'/W) [0(qw —q, —
& ) —0 (qn+ & qw )l,

which preserves the completeness relation g„a„„a
We noted above that r„=O at eF =e„, and

when eF )) t.„, it is easy to show that the M FA is

equivalent to setting r„=O at all energies.
The MFA implies

where a„—=f /ting (y)p„(y)dy is the overlap of the
transverse wave functions. For propagating w and n, t„
is related to the unitary transmission coeKcient by
t„„=t„(k„/k„)'t . ' We see that t„„ is coupled to all
other t „by the kernel A„—:P, , =~a„,, k, , a, We have
solved these equations exactly numerically (Fig. 1), and
they indeed give a sharp series of steps in T„(A). How-

ever, physical insight and an extremely good analytic ap-
proximation for T„can be obtained by a "mean-field ap-
proximation" (MFA), valid for W» W'.

The MFA is motivated by noting that for fixed n, a„
is "peaked" at w such that its transverse wave vector
satisfies q =q„. Since A„ involves products of two
overlaps peaked at channels n and m, the coupling is

small for n&m. We approximate the true overlaps by a
uniform coupling to all modes within one level spacing of
&n.

(n)
(W'/W)g k,,:—8„(K„iJ+„)=8„(W'eF/8tr) [(sin20„+ ~

—20„+~) —(sin20„~ —20„~)],
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where the last equation is obtained by evaluating the
relevant integral. The superscript n indicates that only
modes with q„& & q„, & q„+ i are summed,
cos8„—=q„/kF, sin0„=k„/kF, and Im(9„+i) &0, when

EF ( e„~l. Thus Eq. (2) decouples giving
gwN Zp„w fF Tn, where

T, =4K„k„/[(K„+k„) +J„]. (3)

Note that T„has the form of the above-barrier transmis-
sion coe5cient for a semi-infinite 1D potential step, ex-
cept that the wave vector K of the particle before it
reaches the step is replaced by a complex wave vector
whose real part K„ is an average longitudinal wave vec-
tor for all the propagating modes w with q„—] & q ~ kF,
and whose imaginary part J„ is an average of the decay-
ing modes w with kF & q„&q„+&.

The MFA suggests a remarkable scaling property of
the solution to Eq. (2). Since T„depends only on the
modes w in a limited region around threshold, it is
reasonable to conjecture that T„(d) = T(d ), independent
of n Expan. ding T„(A) from Eq. (3) in 1/n one indeed
finds the asymptotic result

12'(1+6) i

[(1+6) +3'] +(1 —A)
The results given in Fig. 1 show that both Eqs. (3) and

(4) agree very well with the exact solution even for small
n (Fig. 1). In addition they show that the exact solution
obeys the conjectured scaling relation. We note that g
becomes independent of W in the relevant regime W
» W', both in the exact and MFA solutions.

Summarizing the results for the WN geometry we find
that because of (a) the impedance mismatch at thresh-

old, the steps are not arbitrarily sharp at T=O. This is
expected but was obscured in the discussions in Refs. 1

and 2. The steps are, however, much sharper than would
be obtained by extrapolation of the 1D behavior,

i t„ i =a„4k„k„/(k„+k„) (Fig. 1). (b) The MFA
shows that very many modes (a number of order W/W')
in the wide region couple equally to a given mode n; thus
each has only a small transmission probability T„—W'/W. (c) All steps have the same shape and accura-
cy of quantization when measured in terms of 6,.

We now consider the experimental wide-narrow-wide
(WNW) geometry, in which two new eA'ects occur.
First, transmission through the constriction can occur via
an evanescent mode n+1; such a contribution will de-
crease exponentially with increasing length of the con-
striction, becoming negligible when

k'„i&(EF=E„)L=(E„+] E„)' L & 1.
Second, resonant structure in g should appear, as a result
of alternatively constructive and destructive internal
reflection within the constriction. This effect becomes
important when

k„(eF=e„+i )L = (E„+i
—e„) ' 'L & 1.

Thus we see that as soon as the constriction becomes
long enough to damp out the evanescent modes, reso-
nances should appear. The occurrence of either eff'ect
depends on shape L/W' (for fixed eF), or kFL (for fixed
W') (Fig. 2).

For the WNW case, the MFA again gives a result
similar in form to that for the analogous 1D problem of
transmission over a finite potential step. We find

gwNw =g, , (,,g„, where g„ is associated with the
transmission through channel n and is given by

4K„Ic„

4K. 1~.+[K.'+(J.+x..)'][K„'+(J„—x.„) ]sinh (x„L+p„)
4K„k„

4K, k, + [(K, +k, ) +J„][(K„—k„) +J„]sin (k„L+p„)

(5)

where x„=(e„—eF)'i is the magnitude of the imagi-
nary wave vector of the lowest evanescent mode in the
constriction, and the angle p„ is defined by

P„=tanh '[2J„x.„/(K„+J„+x.2)]

for that mode and p„=tan '[2J„k„/(K„+J„—k„)] for
the propagating modes. The MFA describes gwNw to
about (5-10)% accuracy (Figs. 2 and 3) with negligible
computational time whereas the corresponding exact cal-
culations require many central-processing-unit hours
(IBM 3081).

Note that the resonances have systematic features: It
follows from Eq. (5) that they never bring g„above uni-
ty, and the first resonances are always the narrowest. A
potential diAerence between the band bottom within and
outside the constriction is known to exist in the experi-

mental system, and will enhance reflection and em-
phasize the resonances. ' Conversely, in the experimen-
tal system the confining potential changes continuously
and so the internal reflection at the ends of the constric-
tion should be smaller than in the sharp geometry we
consider. We have studied numerically the efI'ect of
tapering the constriction and find that the resonances do
not disappear rapidly (Fig. 2), and so we expect some
resonant eA'ects to occur in experiments. However, even
geometries that lead to large resonances at T=O give
smooth steps at higher temperatures [see Fig. 3 where
we have used g(T) = fdef'(e, T)g(e)],—since the
derivative of the Fermi function f' averages g(EF) over
an energy range of order 4k&T. It is important to note
here the relationship between the results for the WNW
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when L « I «L;„will be discussed in detail elsewhere. '

BrieAy, we find that there are still Auctuations in g of or-
der e /h, but with an amplitude substantially reduced
from the analogous homogeneous system. This indicates
that such an effect of disorder can appear as temperature
is reduced, but is likely to be smaller than the resonant
structure.

In summary, the detailed "line shape" of the steps in
the abrupt limit can be understood by a simple model
which is consistent with experiments. ' ' The existence
of sharp steps both in the abrupt and adiabatic limits in-
dicate that this effect is a universal feature of phase-
coherent ballistic conduction through a constriction.
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Baranger, P. McEuen, and O. Shapira for helpful discus-
sions. This work was supported in part by NSF Grant
No. DMR-8658135, and by a donation of computer time
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FIG. 3. g(W') for dift'erent temperatures, computed as dis-
cussed in text, with use of the MFA (solid lines). Dashed line
is exact numerical result. TO=0.02eF. For experimental pa-
rameters of Ref. 1, To= 2.8 K. Curves are vertically oA'set.

and WN geometries. (a) The WN result, Eq. (4), indi-
cates that the accuracy of quantization of the steps for a
sharp geometry is bounded by T(d, =l) =0.9991, even
disregarding the effects of resonances and evanescent
modes. (b) For long constrictions, a small temperature
will average the very narrow and dense resonances giving
steps precisely described by Eq. (4).

Another possible origin for structure in the steps is dis-
order. When the elastic and inelastic mean free paths l
and L;„satisfy l«L &L;„, one expects (and we have
verified numerically) that both the steps and the regular
structure due to resonances are replaced by fluctuations
in g of order e /h. ' " This emphasizes that the effect is

very different from the quantum Hall efI'ect, which is
rather insensitive to disorder. The interesting regime
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