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Mechanism of the Quenching of the Hall Eff'ect

19 JUNE 1989

George Kirczenow
Department of PhysicsS, imon Fraser University, Burnaby, British Columbia, Canada V5A IS6

(Received 8 February 1989)

Quantum mechanical calculations of electron scattering at junctions of ID conductors are presented
together with an analysis of the implications for experimentally measured transport coefficients. Reso-
nant electron states intrinsic to such junctions give rise at low 8 to quenching of the Hall voltage, maxi-
ma in the longitudinal resistance, and anomalous Hall plateaus. At high 8 they show up as sharp
features in RH and RL which track the bottoms of ID subbands. Quenching of the Hall voltage is found
for ~ 3 populated 1D subbands. The other resonant phenomena occur also at higher band fillings.

PACS numbers: 72.20.My, 73.20.Dx, 73.50.Jt

Simple considerations of electromagnetic theory sug-
gest that the Hall effect should be a universal
phenomenon common to all metallic systems. Thus the
report by Roukes et al. ' of the disappearance of the Hall
voltage across a quasi-one-dimensional (1D) conductor
at low magnetic fields came as a surprise and was met
with some initial skepticism, although in retrospect it ap-
pears that certain anomalies in the data of Simmons,
Tsui, and Weimann and Tirnp et al. were precursors of
this phenomenon. Clear confirmation of the quenching
of the Hall voltage has now been reported by Timp et
al. and Ford et al. , but the physical mechanism re-
sponsible has remained a mystery. Using the Biittiker
formalism, Peeters and Akera and Ando calculated
the Hall resistance of a 1D conductor for weakly coupled
Hall probes, and found no quenching. Peeters suggest-
ed that the observed quenching may be due to strong
coupling of the Hall probes to the 1D conductor in the
experiments, and this idea has been supported by
Kirczenow. In this article the physics of electron trans-
port at quantum wire junctions is studied in some detail
in the strongly coupled regime. It is shown that resonant
states which are intrinsic to junctions of ultranarrow
conductors should manifest themselves at low 8 in

quenching of the Hall effect, anomalous plateaus in the
Hall resistance RH, and peaks in the longitudinal resis-
tance RL. Such resonant states have been predicted by
Peeters, '

by Kirczenow and, at 8 =0, by Schult,
Ravenhall, and Wyld, '' but their implications for mag-
netotransport measurements were not fully understood.
Low-8 phenomena similar to those described above have
been observed in quantum wires by various groups. '

However, in the present calculations the resonant
quenching of the Hall voltage is found for somewhat nar-
rower conductors than those which appear to have been
studied to date experimentally. The other predicted res-
onant phenomena should occur in the currently available
systems but will be more pronounced in narrower con-
ductors. It is hoped that this work will stimulate the de-
velopment of microstructures in which the interesting
physics of resonant electron scattering predicted here
will be easier to observe.
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FIG. I. Rt. vs Fermi energy at B=O. Insets (a), (b): Four-
a nd six-probe geom et ries.

The system to be considered is shown in Fig. 1, inset
(a). Four quantum wires connected to electron reser-
voirs at chemical potentials p, join at right angles. A
magnetic field B is oriented perpendicular to the plane of
the cross. RH and RL for this system can be found from
the Buttiker equations

I, = IP, QT ppp l7, /II, (I)
P

where I is the current in the lead a, and T,p is the prob-
ability that an electron in lead P is scattered into lead tt.
T, are reflection coefticients. All leads are assumed
identical and i is the number of populated channels (sub-
bands plus spin) per lead. All spin splittings will be ig-
nored. The T,p were calculated assuming the potential
confining electrons to the quantum wires to be parabolic,
as is suggested by the theory of Laux, Frank, and
Stern' for the narrowest uniform quantum wires in
semiconductor heterostructures. The model potential en-
ergy of the electrons in the x-y plane was chosen as
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for quantum wires running along the x and y
axes as in the inset. In the symmetric gauge
A=( —By/2, Bx/2, 0). The one-electron Hamiltonian is
H=(p —q, A) /2m*+ V(x,y). In each of the four
quantum wires (whose boundaries are dashed lines at
x = ~ y in Fig. 1), H has eigenfunctions belonging to 1D
subband n (=0, 1,2. . . ) given by

Here p stands for wire 1 or 3 and o. for 2 or 4. The u„l,
and u„k are displaced harmonic-oscillator eigenfunctions.
For an electron in subband n having energy E and wave
vector k, which is incident on the junction from wire 1,
the electron eigenstate is given by W =W ', W, W, and

in wires 1, 2, 3, and 4, respectively, where
+'(x,y) =+nk+X, ~,'11rr, —k, and + (x y) Zra Pr, ~k,
for g =2, 3, and 4. The + is for q =2 and 3; the —is
for g =4. In the summations, k, is the wave vector of a
partial wave with energy E in subband r. The sums are
over a11 subbands, including those with imaginary k„
(evanescent partial waves). The expansion coefficients
a," and hence the scattering probabilities T,~ were found
numerically from the continuity of + and V'+ at x= ~y,

In the four-lead Hall geometry' [Fig. 1, inset (a)] RH
and Rz are found from the Buttiker equations setting
I )

= —I3 =I and I2 =I4 =0:

R4H = (p2 p4)/Iq, = (—h/q, ') (T2~ —T4~ )/Z,

R4q = (p ~ p3)/Iq, = (—h/q, ) (Tq~+ T4~+2T»)/Z,

where

Z = T2~ + Tk +2T3) (T3) + T2)+ T4) ) .

In interpreting both numerical results and measure-
ments, Rz is as important as RH. Experimentally RH is
obtained from a four-lead measurement; however, a six-
lead measurement is used for Rz as shown in Fig. 1, in-
set (b). ' The measured quantity is R61 =(p, —

pI, )/Iq,
(for zero current in the Hall leads). There is a major
physical difference between R6z and R4z which can be
understood as follows: If it is assumed that (i) there is
no phase coherence between the two junctions in inset
(b), (ii) there is complete randomization of electrons be-
tween diferent subbands as they pass between the two
junctions, and (iii) electron backscattering by impurities
can be neglected, then the six-probe Buttiker equations
yield the simple result that R61 =R6L =R4q —h/iq, ,
where i is the number of populated channels, as in (1).
R4z and R6z calculated at 8 =0 are shown in Fig. 1 as a
function of the normalized Fermi energy e=EF/AMp,
where h coo = h (2c/m *) '~ is the subband splitting at
B=0. The dotted line is h/iq, Qualitat. ively, R41 looks
like the quantized two-probe resistance of a ballistic
quantum channel, ' modified by the influence of the
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FIG. 2. R4H (solid curves) and R41 and R6L (dashed
curves) vs co for one occupied subband. Curves a, b, c, d, e,
and f are for @ =0.6, 0.8, 1.0, 1.2, 1.4, and 1.45.

junction. By analogy with Imry, ' one can think of the
difference h/iq, between R4L and R6L as a "contact
resistance" between the reservoirs and wires 1 and 3 in
the four-probe case, which is eliminated in a six-probe
measurement. Then R6z can be interpreted as the resis-
tance due to electron scattering by the leads, which has
recently been the subject of an interesting study by Timp
et al. In this paper the importance of resonant scatter-
ing by the leads is demonstrated. In the quasiballistic
samples studied experimentally, conditions (i) and (ii)
are probably satisfied but (iii) is not, so that one should
write R6z =R6z+Rq, where R8 is a phenomenological
backscattering correction which can be evaluated by
measurements. ' R~ can be large at small 8 but de-
creases as 8 increases, and vanishes when 8 becomes so
large that the sample is eA'ectively two dimensional and
in the quantum Hall regime, as has been discussed by
But tiker. '

In the present model R4H, R4z, and R6z depend on
two variables, the normalized Fermi energy t. and the
normalized cyclotron frequency co=n3, /coo. The results
when only the lowest subband contains electrons are
shown in Fig. 2, where R4H (solid), R6L (dashed), and
R41 (dashed, left scale) are plotted for different e which
increases from curve a to curve f. RH is quenched at low
8, except at low e where it is linear in 8 for small B.
The range of 8 in which RH is quenched increases with
increasing Fermi level. This qualitative trend is contrary
to the earlier phenomenology of Beenakker and van
Houten' (BvH) and was unanticipated. Experiments in
the one-band regime are needed to test the present pre-
diction. One should note, however, that even in the
multiple-band regime, the model of BvH disagrees quali-
tatively with the measurements of Roukes et al. ' Ex-
cept in case a (where the band is magnetically depopu-
lated in the range shown), there is a quantum Hall pla-
teau (QHP) at large co where RH~ h/2q, . The local
minima exhibited by RH in curves e and f are highly
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significant and will be discussed below. RL exhibits a
maximum, which is also important, in the co range where
RH makes the transition from the QHP into the quench
zone. Notice that at large magnetic fields R4L h/2q, ,
while R6I 0.

Some examples of RH (solid curves) and R61 (dashed
curves) vs co for multiple occupied bands are shown in
Fig. 3. At 8=0, two subbands (n=0 and 1) are popu-
lated for a=1.9 and 2.4, and three for a=3.4. Vertical
dotted lines mark where subband n empties. The accu-
rate matching of R61 across these lines (where h/iq,
changes) is quite remarkable. There is no quenching of
RH for e = 1.9, quenching at e =2.4, and incipient
quenching for a=3.4. The minima in RH and maxima
in Rq marked with the asterisks are due to resonant
states localized at the junction. The existence of these
states is expected theoretically. ' " Physically they exist
because an electron near the junction can lower its kinet-
ic energy relative to that away from the junction by ex-
tending its wave function into all four arms of the cross.
Such resonant states cause enhanced backscattering of
electrons at the junction, and hence a peak in RL. Re-
cently Buttiker' discussed the effect of junction im-

purity states on the T ~ and hence on four-probe resis-
tance measurements. His argument applies also to in-
trinsic junction resonances and shows that they should
depress RH. The features in Fig. 3 that are the key to
understanding the quenching of the Hall eff'ect are
marked by pointers. They are steps in RH (some involv-

ing weak local minima) and associated broad maxima in

Rl. Figure 4 shows the locations of the minima of RH
(full circles) and inaxima of RL (open circles) obtained
from a series of scans like those in Fig. 3. They lie on
trajectories running from high e and co to low e and co.

At the high-co end of each trajectory a sharp maximum
of RL coincides with a sharp minimum of RH [the obvi-
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ous resonances (asterisks) in Fig. 31, but towards the
low-co end, the minimum of R& evolves continuously into
a step, while the maximum in RL broadens and weakens.
We conclude that while the signature of a junction reso-
nance at high magnetic fields is a sharp peak in Rl coin-
cident with a minimum in RH, at low fields it is a broad
maximum in RI and a step in RH. The case a=3.4 in
Fig. 3 shows five resonances (asterisks and pointers) at
diff'erent stages of evolution from the high-field to the
low-field form. A striking example is the evolution of the
right-hand resonance (asterisk) at a=1.9 in Fig. 3 into
the step in RH and maximum of RL which mark the edge
of the quench zone in Fig. 2. Curves e and f in Fig. 2
show the last vestiges of the minimum in RH before it
disappears and the simple step down into the quench
evolves. All of the quench zones in Fig. 4 are associated
with resonances in this way, so that in this model the
quenching is clearly the result of the steps in RH which
are low-field manifestations of junction resonances. No-
tice how the resonant maxima of RL (open circles, Fig.
4) track the boundaries of the quench zones (dashed
lines). Maxima of RL at low 8 have often been observed
experimentally in conjunction with quenching of
RH, ' ' but there are some indications that this may
have been fortuitous. The present theory predicts that
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FIG. 3. R4H (solid curves) and R6L (dashed curves) vs ro for
multiple occupied bands.

FIG. 4. Global map of predictions of the model. Solid
curves are bottoms of subbands. Open (full) circles are maxi-
ma of R& (minima of RH) which locate the junction reso-
nances. Shaded areas are "last plateaus. " Boundaries of
quench zones (dashed curves) are located by extrapolating to
zero RH the slope of RH vs m curves at their inAection points.
Only incipient quenching occurs in the area labeled "qz."
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the quenching of RH should disappear and then reappear
if the Fermi level is varied monotonically over a wide
enough range at low B as is evident from Fig. 4. This
eff'ect is a direct consequence of the quenching being due
to resonances. Qualitatively similar behavior has been
observed by Roukes et al. ,

' but their samples have
higher electron densities than those at which quenching
is found in the present model. The present model pre-
dicts quenching when three or fewer subbands are occu-
pied, although the other predicted resonant phenomena
are not restricted to this range. The features in RH la-
beled "last plateau, " LP, and LP' in Fig. 3 (shaded areas
in Fig. 4) clearly are also due to steps in RH associated
with junction resonances. Such plateaus are seen experi-
mentally, ' ' and were at one time thought to be im-

perfect quantum Hall plateaus. The present calculations
suggest that they are not. Unlike the LP's, the true
quantum Hall plateaus found here do not slope and are
accurately quantized according to RH=h/iq, Not. ice
that the LP's in Fig. 3 do not correspond to RH near
h/i'q, for integer i'

Other interesting physics of the resonances may also
be inferred from Fig. 4: The bottoms of the 1D sub-
bands (BSB's) are shown as solid curves. At high to, the
energies of resonances just below a BSB accurately track
that BSB. This suggests that it may be useful to think of
these resonances as bound states of the subband just
above them. They are, of course, unbound relative to
lower subbands. This simple picture explains why the
resonances closest to the n=l and 2 BSB's disappear
abruptly when they pass above the solid curves in Fig.
4—they become unbound relative to the subband to
which they primarily belong. It also explains the
broadening of the resonances at lower ca (where their en-
ergy is lower): The lower energy implies a larger admix-
ture of lower subbands to the state and hence a shorter
resonance lifetime.

In conclusion, resonant scattering at quantum wire
junctions has been predicted to result in a richness of re-
markable physical phenomena. Its presence at low B
suggests that it may have practical implications for mi-
crocircuit design.
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Note added. —Since this work was submitted for pub-
lication I have become aware of independent work by
Ravenhall, Wyld, and Schult, ' who use a square-well
confining potential to study electron scattering at junc-
tions, and by Baranger and Stone, who argue that the
quenching of the Hall voltage is due to collimation of
electrons in tapered junctions. Collimation eAects may

be relevant to some of the earlier data' ' and to recent
results of Chang and Chang and of Timp, but do not
explain the measurements of Roukes et al. ' Ford et
al. have recently demonstrated experimentally another
geometry-dependent quenching mechanism based on
electron reflections from surfaces within junctions.
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