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Comprehensive Theory of Simple Fluids, Critical Point Included
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We present a comprehensive theory of fluids which has the typical accuracy of a good liquid-state
theory in the dense regime but in addition has a genuine nonclassical critical behavior. The theory is
based on the hierarchical reference theory of fluids decoupled with an approximation inspired by the op-
timized random-phase approximation. The Lennard-Jones interaction is studied in detail above the criti-
cal temperature.

PACS numbers: 61.20.Gy, 05.70.—a

We do not have yet a liquid-state theory which is able
to treat correctly also the region of the critical point of
the liquid-vapor phase transition. Various liquid-state
theories can be very accurate elsewhere in the phase dia-
gram but none of them is correct even qualitatively close
to the critical point in the sense of having scaling
satisfied with reasonable critical exponents. Renormal-
ization-group theory has not yet produced a practical
scheme to compute nonuniversal quantities starting from
a realistic model of a fluid. A few years back two of the
authors' introduced a new scheme, the hierarchical
reference theory (HRT), which held promise to fulfill
this goal. This approach, however, leads to an infinite
hierarchy of equations and it was not guaranteed that it
would lead to a practical and accurate scheme of compu-
tation.

We have performed a decisive step to solve this prob-
lem. In fact we show in this Letter how a well known
and accurate liquid-state theory, the optimized random-
phase approximation (ORPA) which has a rather trivial
critical-point behavior, can be transformed into a theory
with a nontrivial critical behavior. We can consider the
new theory either as a sophisticated generalization of
ORPA or as the lowest-order approximation of HRT
which satisfies the core condition, i.e., the vanishing of
the radial distribution function g(r) inside the core.

In ORPA the interatomic pair potential v(r) is de-
composed into a repulsive part vR(r) and an attractive
tail w(r) =v(r) —vR(r), and the eKect of w(r) on the
properties of the reference system, i.e., the system with
interaction vR(r), is determined. However, following the
HRT approach we turn on w(r) not just in one step but
selectively in wave-vector space: We consider a family
of partially coupled Q systems with potential

vg(r) =v~(r)+wg(r),

where the Fourier transform of wg(r) is wg(q),

When Q =~, vg is just the reference system but when
Q=0 the fully interacting system is recovered. This pro-
cedure allows a gradual turning on of the critical fluctua-
tions on diA'erent length scales because density fluctua-
tions with k & Q are strongly depressed in the Q system.
In fact in RPA the S(k) of the Q system for k & Q is
simply the structure factor of the reference system, and
only for k & Q do critical fluctuations show up. Notice,
however, that the Q system is treated over all of its
length scales and we do not trace out degrees of freedom
as in renormalization-group calculations.

The flow of the excess Helmholtz free energy Ag" of
the Q system is given in three dimensions by the exact
equation

Q',„„p@g)
dg 4 2

1
—pC g(g)

(3)

where A'" differs from A'" by analytic terms (see I),
p(k) = —w(k)/k8T, and C g is related to the direct
correlation function cg of the Q system by

C g (k)—:cg (k) +p(k) —
pg (k) (4)

evaluated on the shell k =Q. The flow of C g is deter-
mined by an equation which involves the three- and
four-body direct correlation functions, but we truncate
the problem at the first equation (3) of the hierarchy by
an Ansatz for Pg(k). Precisely, for r & d we write

C g(r) =cR(r)+age(r), (5)
and

C g(r) for r & d is determined by the condition of
vanishing radial distribution function of the Q system:

cg(k)
gg (r) —= 1+ e'"' ' =0, for r & d . (6)(2') 3 1 —pcg(k)

cR(r) is the direct correlation function of the reference
system, d is its hard-core diameter, and kg is determined
by the compressibility sum rule which reads

w(q), for q & Q,
0, for q &Q. (2)

Cg(k =0) =8 A"/Bp

If lg =1, Eqs. (4)-(6) are simply the ORPA for the Q
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system. Generalizations of ORPA or of related equa-
tions similar to (5) in the sense that a parameter is intro-
duced which is determined by a condition of thermo-
dynamic consistency like Eq. (7) have been already con-
sidered in the literature but in all these formulations the
effect of the full perturbation w(r) is considered. Our
approach differs in a fundamental way because the con-
dition (7) is applied all along the Q integration and only
in this way one finds nontrivial critical exponents. In
fact with our Ansatz 8g(k) is analytic in k so that rl =0
and the other critical exponents have been already com-
puted in I. By performing a dimensional expansion these
turn out to be correct to linear order in e =4 —d, and for
d=3 an explicit computation of the fixed point of Eqs.
(3)-(7) gave

v=0.689, @=1.378, P =0.345, 6=5. (8)

We have applied our theory to the Lennard-Jones
fluid: vLq(r) =4c[(rJ/r) ' —(cr/r) ] and vLq is decom-
posed with the Andersen-Chandler-Weeks rule. The
repulsive part of the interaction, i.e., vR(r) =vLq(r)+e
for r (2't cr and vtt(r) =0 for r & 2't cr, is replaced by
the hard-sphere potential with a state-dependent diame-
ter d(p, T) given by the Andersen-Chandler-Weeks
rule. ' As usual with ORPA Eq. (6) is approximately
solved by expanding 8g(r) for r (d on a polynomial
basis (the first five Legendre polynomials are adequate'
and the coefficients u„(Q) (n =0, . . . , 4) are determined
from Eq. (6).

Combining Eqs. (3)-(7) one obtains a system of six
partial differential equations for Ag and [u„(Q)] as
functions of Q and p (the temperature T has the role of
an external parameter). These equations become decou-
pled if in the equations for u„(Q) one neglects the feed-
back of density fluctuations on the short-range properties
of the system. The accuracy of this approximation is
verified a posteriori by verifying that the core condition
(6) is satisfied as in a standard ORPA computation. The
flow equation for the excess chemical potential Pygmy

—:tIAg"/t)p is a flux-conserving parabolic equation in Q
and in p which is integrated starting from Q =~ down
to Q =0 in the density range (0,1) for p* =per F. or the
moment we have considered only a solution correspond-
ing to a homogeneous state so that we study tempera-
tures above the critical one T, because the equation be-
comes unstable for T & T, inside the two-phase region.
The properties of hard spheres [the Carnahan-Starling
equation of state and the Verlet-Weiss parametrization
of cR(k)] enter as initial conditions at Q =~. The
boundary condition at p =0 is obtained by solving the or-
dinary differential equation which is obtained by expand-
ing to second order in density all quantities appearing in

Eq. (3). At p*=1 we use the ORPA solution; i.e., we
put Xg =1 for all Q.

First we compare our results with those of simulation.
In Fig. 1 the compressibility factor Z=P/pkttT on the
isotherm T* =T/e=1. 35 is shown over the full density
range. The agreement is excellent up to the highest den-
sity and comparable with the results of accurate liquid-
state theories. We find that the critical point of the LJ
system is at T* =1.3330 and p =0.3155 whereas simu-
lation leads to the estimate T* =1.31 and p* =0.31.

The universal critical behavior given by our equations
can be studied separately and this leads, for instance, to
the critical exponents (8) and to the scaled equation of
state displayed below. The solution of the full equation
flows to this fixed point; for instance, on the critical iso-
chore the asymptotic behavior for the isothermal com-
pressibility corresponding to the exponent y=1.378 is
roughly reached for a reduced temperature t =(T T,)/—
T,. =10 as shown in Fig. 2. Here the fit of the exper-
imental data in Xe is also shown. Notice that in the
theory there is no adjustable parameter once e and a. are
fixed and these have been chosen to get agreement with
the experimental critical point (e/ktt =217.3 K, cr=4. 16
A). These values are very close to the standard ones,
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FIG. 1. Compressibility factor Z of the LJ system for the
isotherm T* =1.35: simulation (Ref. 7) (0), ORPA (x), and
HRr ( ).
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FIG. 2. Reduced isothermal compressibility S(0) =nkttTsT
and correlation length g as functions of t =(T—T, )/T, on the
critical isotherm. HRT results for S(0) (Q) and g (L), and fits
of experimental data (Refs. 9 and 10) for Xe ( ).
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e/kg =225.3 K, o =4.07 A. There is an excellent agree-
ment between theory and experiment but at smaller t one
notices the larger slope of the theoretical result and this
is due to the larger value of y compared with the experi-
mental one (y=1.24). Excellent agreement is also
found for the correlation length and in Fig. 1 the data'
for Xe are shown.

Close to the critical point scaling with the exponents
(8) is satisfied by the present approximation and in Fig.
3 the scaling function h(x), defined by the relation

hp =hp Ihp I

'h

, Ihs I
'", ' (9)

is shown there hp = (p —p, )/p, and hp = [p (p, T)
—p(p„T) j//T, ll. We display both h(x) obtained from
the asymptotic analysis and the results of the full equa-
tion for a number of isotherms in the density range
0.2 & p* &0.4. Also shown is the result of a fit'' of ex-
perimental data in Xe. At large x theory and experi-
ment give a different slope for h(x), which is equal to y,
and this is again a manifestation of the small deviation
between our value and the experimental value of y. To a
very good extent the results of the full equation are sym-
metric around p, and on the scale of Fig. 3 the asym-
metry is not visible. The region of validity of the asymp-
totic behavior appears to be smaller both in t and in hp
in comparison to experiment. '' This parallels the slow
setting in of the asymptotic behavior on the critical iso-
core (Fig. 2) and presumably is due to the constraint

g =0 of the present approximation.
In Fig. 4 we compare the experimental structure fac-

tor S(k) for krypton' for a state in the region of the
critical point (T=237 K, p=5.582 atoms/nm ) with
theory with the LJ parameters e/kz = 157 K and cr

=3.64 A which give the correct critical point in our ap-
proximation. The agreement is reasonable and the main
origin of the discrepancy is due to the use of the LJ po-

tential and not to the approximations of the theory. This
is demonstrated by comparing the results of the modified
hypernetted chain equation (MHNC) for the LJ poten-
tial and for an accurate pair interaction plus the three-
body Axilrod-Teller potential. ' It can be noticed that
the present result is very close to the MHNC result when
the same potential is used.

In conclusion, we have presented the first theory
which, starting from a realistic pair interaction, allows
the accurate computation of the properties of a fluid over
the full density range, the region of the critical point in-
cluded. By using the method of the HRT we have
transformed a successful liquid-state theory, ORPA, into
a theory with a nontrivial critical behavior without losing
(actually improving) its accuracy far from the critical
point. The results for the universal quantities in the crit-
ical region are not competitive with those of accurate re-
normalization-group computations but since the present
theory is within the framework of the general formula-
tion of HRT we know how to introduce systematic im-
provements on it. If in place of Ansatz (5) we consider
the second equation of the hierarchy with a suitable
decoupling at this level the critical exponents should im-
prove since these turn out' to be correct to second order
in e and not just to first order as in the case of the
present computation.

Presently liquid-state theory is mainly based on the
method of the integral equation for g(r) but often it has
been drawn to consider differential conditions via ther-
modynamic consistency requirements. The present ap-
proach is fully differential but at a higher level since it
involves also the parameter Q which controls the turning
on of the interaction and of the density fluctuations and
this is central to obtain the renormalization-group struc-
ture close to the critical point. We have considered the
LJ potential but nothing prevents the use of a more real-
istic pair interaction.
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FIG. 3. Scaled equation of state h(x) as function of X.

HRT results for T* =1.33313 (Q), T* =1.33338 (0), and
T* =1.334 (h), from HRT asymptotic analysis ( ), and
fitted experimental data (Ref. 11) for Xe (---).
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FIG. 4. Structure factor for krypton at T =237 K and
p=5.582 atoms/nm: experimental (Ref. 12) (0), HRT result
for LJ ( ), and modified hypernetted chain results for LJ
(+) and for an accurate pair-plus-three-body interaction (Ref.
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