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Breakdown of Multifractal Behavior in Diffusion-Limited Aggregates
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Analytic arguments are presented, concerning the "phase transition" to nonmultifractal behavior of
the qth moment, Mq, of growth probabilities in diA'usion-limited aggregation, found numerically by Lee

and Stanley. Assuming the existence of exponentially small growth probabilities, for a single growing

aggregate, we find a transition at q=0. For aggregates of size I., this transition splits into two at

qo(L) (q, (L) & 0. Quantitative analysis of qo(L) yields information on the tail of the growth probabili-

ty distribution. Averaging M~ over all aggregates may yield a finite qo.
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The diffusion-limited aggregation (DLA) model has
been studied intensively in recent years due to its wide
range of physical applications. The development of a
DLA structure is governed by the growth probability of
each site that belongs to its accessible perimeter. This
growth probability density (GPD) is beheved to be well

described by the multifractal formalism, which basi-
cally assumes scaling of each and every part of the GPD.
The moments of the GPD are therefore assumed to have
the form,

where L is the linear size of the growing aggregate, and

n(p) is the number of sites having a growth probability

p. Multifractal analysis often uses the Legendre trans-
form of r(q), f(a), where

dq' =qQ

f(a) is usually upward convex, with a maximum at

f=Ds (the fractal dimension of the accessible sites on
the growth perimeter).

The mathematical form of (1) led several authors'
to formulate an analogy between Mq and a statistical-
mechanical partition function. In this analogy q corre-
sponds to the inverse "temperature" and r(q) = —ln

M~/lnL represents a "free energy.
" This analogy is

meaningful as long as r(q) and f(a) are independent of
L. Indeed this size independence is assumed in the usual
picture of multifractals for su%ciently large L. Howev-

er, problems arose" ' for negative values of q [and
a & tt(q =0)]. Large fiuctuations prevented accurate
calculations and results for z(q) became size dependent.
This led to the anticipation ' " of a "phase transition' at
some negative value of q, q, . Specifically, Lee and Stan-
ley' (LS) used exact enumeration to find a transition at
a well defined critical value, q, = —1. LS also found an
exponential decay of the smallest growth probability
with size.

In the present Letter we relate analytically, the non-

lim 1np;„(L)/1nL = —~.
g ~ oo

(3)

Intuitively, we expect (3) to hold for any typical aggre
gate. In any case, all the following arguments apply only
to aggregates obeying (3). On a single aggregate we al-

multifractal phenomena for negative q to the possible ex-
istence of small growth probabilities that decay faster
than any power of L. ' First, we consider a single aggre-
gate at diff'erent stages of its development. Assuming the
existence of exponentially small growing probabilities,
we identify two size depend-ent critical thresholds,

qo(L) & q, (L) & 0, both approaching zero as L
The usual multifractal formalism, with size-independent
exponents, applies only for q &q, (L) For q.o(L) &q
& q, (L), the exponents depend on L, as shown in Fig. 1.
For q & qo(L), the exponents f and a are independent of
q. For L~ ee, we predict a phase transition in f(q) at
q=0, which is either first or third order. Both —r(q, L)
and a(q, L) diverge to ee for L ~ ee and q & 0. Averag-
ing over aggregates may yield a nonvanishing value of q,
if sites with exponentially small growth probability ap-
pear only in clusters whose occurrence probability is also
exponentially small. The value of qo, on the other hand,
may be finite even if such growth probabilities appear in

typical clusters. This may explain the size-independent
finite threshold found by LS, who also averaged Mq over
all aggregates with L ~ 5.

Starting from a single typical aggregate we first estab-
lish the existence of a threshold, q, . For all q ~ 0, there
exists a large amount of evidence that r(q) is finite
and independent of L. Particularly, r(0) = —Ds.
Hence, q, ~ 0. For large negative q, Mq is dominated by
the smallest growth probability, p;„, with degeneracy
n(p;„) This prob.ability is associated with sites that are
deep inside "fjords. " The electrostatic field (proportion-
al to the growth probability) at the bottom of a narrow
straight slit decays exponentially with its depth. ' Hence
it is conceivable that sites within a tortuous fjord of the
same depth are even more screened, and we assume p
to decay, at least, exponentially with L, i.e.,

1989 The American Physical Society 2977



VOLUME 62, NUMBER 25 PHYSICAL REVIEW LETTERS 19 JUNE 1989

(0)

(b)

/
I

I
I

I

I

I

!

!

!

!

Dg

for all q & 0, hence q, (~) =0
To obtain a quantitative estimate of the size depen-

dence of q„divide the Mo points in the GPD into E
groups, each containing Mo(L)/K growth probability
values. Choosing a representative probability value pk
for each group (e.g., the average), we have p
=p

~
& p2 & & pg, with corresponding degeneracies

n(pl, ). For large L, n(pj, )—L ", with 0~ dk ~ Dg.
Since p;„decays exponentially with L, and p&-p, „
-L '", where a;„ is L independent, ' ' we expect to
find a value k, (which may depend on L) such that
lnpl, /lnL is independent of L for k & k, and approaches

with L ~ for k ~ k, . We can now write

Mq Mq +Mq with

Mq g n(pt, )pg.
IK =1

For large negative q, Mq =Mq is dominated by
n(p;„)p~m;„and (4) becomes an equality:

—z(q, L) =d;„+q1np;„(L)/lnL .

q (i)) qC( LP)

Combining (2) and (5) implies

a(q, L) =a,. „(L)= —lnp;„(L)/lnL, f(q, L)—=d;„.

&(~)
li (c)

D g

dmin. —

~min max( 1 a,]L,)

In this range of q we thus predict an L-independent
value of f, associated with a q-independent value of a
which increases strongly with L. The right-hand side
point in the f(a) curve, a,„, moves to the right at con-
stant f, as L increases. Assuming qp(L) to be the value
below which (5) and (6) hold, we identify qo(L) by re-
quiring that the term with k =2 in Mq becomes compa-
rable to that with k =1. Thus

(d2 —d;„)lnL
Inp;„(L) —in@2(L)

If we assume'
FIG. I. Schematic dependence of (a) f(q, L), (b) a(q, L),

and (c) f(a, L), for a single growing aggregate at sizes L~

(dashed line) and L2& L~ (solid line). d;, is the fractal di-

mension of the growth sites with the smallest growth probabili-
ty. a,,(L) and qo(L) are given in Eqs. (6) and (9).

p;„—exp( —AiL'), pq —exp( —A2L ),
with x ~ y, then we predict that for large L

qo(L) = —C(dq —d;„)L lnL,

(8)

ways have 1 ~ n(p;„) ~ Mo, hence we expect that (for
large L) n(p;„)—L '". Here we should comment that
although we assume a fractal behavior of DLA clusters,
such a behavior has not been established for L
Everything that follows applies only to the range of
length scales where DLA exhibits this behavior. Thus
for q & 0 we have M~ ~ n(pmin)pmin, and

—z(q, L) =InM~/1nL ~ d;„+q lnp;„(L)/1nL . (4)

Given (3), Eq. (4) implies that limt z(q, L)

with C=l/Ai (if x &y) and C= 1/(Ai —Aq) (if x-y).
Equation (8) also yields

a .,„(L)=A iL /lnL cx: 1/qo(L) . (10)

As q increases above qo, Mq will still be dominated by
M~ up to q=q, (L). Since qo~q, ~0, Eqs. (7) or (9)
can be used as lower bounds on the approach of q, (L) to
zero: Iq, (L)

I
~ Iqo(L) I

—L lnL. For qo&q &q„
we can use steepest descent to estimate M~ n(p, )pg, —
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q, (L) = (D —d, )/[a(0)+lnp, (L)/InL] . (12)

Since both p, and d, depend on q„(12) is still implicit.
The detailed q dependence off and a is determined by

the value of d;, . If d;„&Ds, then f drops quickly
from f(q, ) =Ds to d;„as q decreases from q, to qp and
reinains constant for q &qp [Fig. 1(a)]. In the limit
L ~, f(q, L) undergoes a first order tran-sition at
q =0. The function a(q, L) increases quickly from
a(q, ) =a(0) to a,„(L) in the same narrow range
qp & q & q„and a,. „(L)~ ~ as L ~ ~ [Fig. 1(b)]. In
the corresponding f(a) curve [Fig. 1(c)], the finite drop
in f (from Dz to d;„)occurs over a very wide range of a
[from a(q, ) to a .,„(L)]. The variation of f with a
therefore seems very slow, approaching an almost flat
line. A gradual increase with L of f(a), towards a flat
line, was indeed observed by Meakin (Ref. 2) in Ref. 12
and in references cited there. If d;„=Ds (a finite frac-
tion of the growth sites have the minimal growth proba-
bility p;„), then f(q, L)=Ds for all q &0. The transi-
tion at q =0 (for L ~) then becomes third order

We can now discuss (real or computer) experiments.
For q & qp, and fixed L, (5) implies that r(q, L) varies
linearly with q, with a slope of a,„(L). Measuring this
slope for several cluster sizes yields p;„(L), via (6), and
allows a check of our theory. Near p;„, this implies
n(p) —( —lnp) "'" '.

So far we have discussed a single growing aggregate.
To analyze an average over aggregates we define p(y) as
the occurrence probability (OP) of the configuration Z.
Since for q ~ 0 the averaged Mq scales as a power of L,
then clearly there exists a set of configurations, I „whose
OP is not exponentially small with L. We also define the
complementary set, I „provided it exists. As for a single
aggregate, we consider the smallest possible value of p
over all cluster configurations, P;„. In fact, LS found
that P;„—exp( —AL ), confirming our arguments, at

with n(p, ) —L ', hence

—r(q, L) =d„+q lnp, (L)/InL,

a(q, L) = —lnp„(L)/lnL,

f(q, L) =d, for qp & q & q, .

To obtain a more quantitative estimate for q„we use
steepest descent to write

K

M~ = g n(pI, )pg —L
k =k, + I

We expect a(q) =r(q) if the sum is dominated by
p* —L ' & pi, , At q„M& —Mz, , hence —[a(q, )
+d, ]lnL =q, lnp, (L), where p, p, dominates M~
Assuming that

~ q, ~
&&1, and using a(q, ) =r(q, )

=q, a(q, ) f(q, ),—we now expand a and f around q =0,
noting that f(0) =Ds and (df/dq)~=p=0. Tlius,

least for the average case. We ean now write

(M &= g p(y)gn„(p)p~-L ' 't~+(n(P;, ))P't;, .

If P;„resides in a cluster that belongs to I „, then as
L ~ (n(p;„))-L '" and the moments will diverge
at qp-&d;, )lnL/lnP;, 0 . If, on the other hand,
P;„belongs to I „then (n(P;„)) may be as small as
L with 0~ z ~ D, where D is the fractal dimension
of DLA. Hence,

qp =L'lnL/lnP;„. (14)

The asymptotic behavior of qp is determined by (14). If
P;„ is given by (8), and if z =x, then qp depends very
weakly on L. This seems to be the case for currents in

random resistor networks. ' Such a situation may cause
the apparent L independence of the threshold, found by
LS. It is straightforward to extend the analysis for q, as
for a single cluster, and to find that asymptotically q, ~0
only when all the exponentially small growth probabili-
ties appear in exponentially rare aggregates The L-.

independent threshold observed by LS is probably to be
identified with our qp(L). The data of LS do not allow a
distinction between qo and q, . It is possible that such a
distinction is evident only for L))5.

Real experiments and Monte Carlo simulations of
DLA may not be able to probe the innermost regions of
the aggregate, corresponding to p~;„. However, if the
smallest growth probability which is actually probed de-
cays exponentially with L, then we still expect our results
to hold, with d;„replaced by its effective measured
value. The decrease in

~ q, ~
thus serves as an indicator

to the efficiency in fjords examination. Moreover, if the
unprobed sites comprise a very large fraction then the
measured value of Dz is lower then its actual value. This
may explain why D~ is found to be lower then the fractal
dimension of the mass in DLA and may even cause
r(q & 0) to shift downward a little.

Even if (8) were exact, one might expect large fluctua-
tions in the coefficient A ~ (and probably in x as well) be-
tween different aggregates. These result in fluctuating
values of qp(L) and a,,„(L), and explain the practical
difficulties in obtaining reliable data for negative q, '
or in comparing f(a) curves from different experiments.
Large fluctuations will then occur when one averages Mq
over many clusters. One way to reduce them is to aver-

age over InM~, i.e. , over r(q, L), as done for quenched
averages in glassy statistical systems (and not to use the
annealed average over Mz, as done usually' ). This tac-
tic indeed leaps to mind in view of the analogy with ther-
modynamics of random systems. '

In summary, our arguments offer a full explanation
for the nonmultifractal behavior of DLA. For finite size,
L, we find, in general, two transitions at 0 ~ q, ~ qo with

qp(L) —L " for a single cluster. It is true that our
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analysis is based on the assumption that exponentially
small probabilities exist for most clusters. This assump-
tion is supported by the exact solution to the field inside
a long and narrow slit, ' and by results for, at least,
some small clusters. ' One should bear in mind that
screened sites are prominent in large clusters, and small
scale simulations as in Ref. 12 may not be able to see
large typical configurations. Thus simulations for larger
clusters are needed, though we note that these sites are
inherently di%cult to measure. We expect similar
scenarios to apply to other "phase transitions" discussed
in the literature. '" We hope that accurate (computer
or real) measurements will be able to test our predictions
concerning the two thresholds q, (L) and qo(L), and the
size variation of the multifractal spectrum f(a).

After submitting the first version of this Letter we re-
ceived a report by J. Lee, P. Alstr&m, and H. E. Stanley,
which extends Ref. 12 and elaborates on P;„(L) and on
the "phase transition. " As we state above, there is no
disagreement between them and ourselves as regards the
transition on the "average" aggregate. It remains to be
seen if the typical aggregate also has a similar transition
(as we believe) or not.

We acknowledge useful remarks from H. E. Stanley,
P. Alstrgm, J. Lee, and J. Feder. This work was sup-
ported by grants from the U.S.-Israel Binational Science
Foundation (BSF) and the Israel Academy of Sciences
and Humanities.
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