VOLUME 62, NUMBER 25

PHYSICAL REVIEW LETTERS

19 JUNE 1989
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The question of whether it is possible to have a kinematic magnetic dynamo for a conducting fluid
with time-independent (steady) velocity field v(x) and vanishingly small electrical resistivity has
remained an open question in the understanding of the origin of magnetic fields in nature. By consider-
ing the zero-resistivity dynamics, examples of steady dynamos are found. Analysis of these examples
supports the conjecture that, for sufficiently small resistivity, dynamo action can occur in typical,
smooth, steady, three-dimensional, chaotic fluid flows.
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The kinematic magnetic dynamo problem'~'® may be

posed as follows: Given the flow of an initially unmag-
netized electrically conducting fluid of velocity v(x,z),
density p(x,t), and electrical conductivity o, will a small
seed magnetic field amplify exponentially with time? If
it does, then it is unnatural for the fluid to be unmagnet-
ized, and it tends to generate its own magnetic field, i.e.,
the unmagnetized situation is unstable. Thus the kine-
matic dynamo problem is of interest with respect to the
question of why magnetic fields are prevalent in astro-
physical situations (e.g., planets, stars, galaxies, etc.).
The basic (normalized) equation governing this situation

is' ™4

8(B/p)/dot+v-V(B/p) =(B/p)-Vv+(pR,) ~'V’B, (1)

where B is the magnetic field, v and p satisfy 9p/d¢
+V-(pv) =0, and R,, the magnetic Reynolds number,
is a normalized dimensionless electrical conductivity.
Since R,, is extremely large in many situations (e.g.,
R,,210% in the sun), it has been argued that only
dynamos which survive in the limit R,,— oo (called
“fast” dynamos®) are of interest in these cases. It is
currently an unresolved question as to whether fast kine-
matic dynamos can occur for typical smooth steady
flows.?’ By a steady flow we mean one for which v is
time independent [v=v(x) and V-(pv)=0]. It is the
question of the existence of steady fast kinematic mag-
netic dynamos which is the subject of this paper.’'18-2!
Our results suggest that typical, smooth, steady, three-
dimensional, chaotic fluid flows can yield fast dynamos.
Here by “chaotic fluid flow” we mean that the trajec-
tory of fluid elements, governed by the equation dx(z)/
dt =v(x(z)), displays a sensitive dependence on initial
conditions. That is, if we consider two close-by orbits,
X(¢) and X(¢)+8x(¢) (where 8x is infinitesimal), then,
for typical £(0) and 6x(0), the quantity |8x(z)| grows
exponentially with time [| 6x(z) | ~exp(ht), h > 0]. The
equation governing 8x(z) is obtained from a variation of

© 1989 The American Physical Society

the fluid-element trajectory equation,
déx/dt =8x-Vv(X(1)) . 2)

Arnold et al.” have considered the question of the ex-
istence of steady fast dynamos and introduced the idea
that chaotic flows and fast dynamo action are connected.
They illustrate this idea by explicitly constructing a
steady fast dynamo based on a chaotic flow in a three-
dimensional space of negative geodesic curvature. While
this illustration is instructive, because of the special topo-
logical properties of the space required for their example,
it is not clear what their example implies for flows in ac-
tual Euclidian space.

The relevance of chaotic flows follows by setting R,,
=oo in (1) (i.e., deleting the VB term). The equation
for b=B/p then becomes the same as that for éx, Eq.
(2) (d/dt=9/9t+v-V). Hence exponential growth of
&x appears to imply the possibility of exponential growth
of b and hence B. We note, however, that the limit
R,,— oo is highly singular,”'3"!" and it is not immedi-
ately clear how the solution of (1) with R, =co relates
to its solution with finite large R,,. An answer to this
question was proposed in Refs. 15 and 16 and will be
used here as a basis for our subsequent considerations in
the present paper. Specifically, let ®«(z) denote the
magnetic flux through some typical smooth surface
where ®«(¢) is obtained by solving (1) with R,, =<0 and
some typical smooth initial condition, B(x,0). Suppose
®.. is observed to increase exponentially with time, ®w
~exp(y»t). Then, according to Refs. 15 and 16, the
maximum unstable growth rate at finite R, Ymax(Rm),
approaches 7. as R, — . (This statement has also re-
cently been verified in numerical experiments.'’) The
importance of this is that it reduces the partial
differential equation problem, Eq. (1) with finite R,,, to
a problem in nonlinear dynamics, and in particular to
dx/dt =v and Eq. (2). Thus, in what follows, we shall
attempt to specify a flow for which ®. increases ex-
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ponentially with time. We call such flows D flows
(where D stands for dynamo). If we construct a steady
D flow, then we claim that we have a steady fast
dynamo.

It is useful first to consider the case of a two-dimen-
sional planar flow in which B lies in the same plane as
the flow (i.e., v and B have no z component and no spa-
tial dependence on z). In this case it is known that
dynamo action cannot occur for any R, (Cowling’s
theorem'™). In the R,, =0 case this follows from the
fact that magnetic field lines are convected with the
fluid.'"* This is illustrated in Fig. 1, which shows an ini-
tial closed field line in Fig. 1(a) and the same field line
after stretching by a two-dimensional flow [Fig. 1(b)].
The flux through the dashed line in the figure does not
grow exponentially due to cancellation of upward and
downward piercings of the dashed line by the magnetic
field.

We now consider a class of three-dimensional steady
flows which are periodic in z with periodicity length L.
We shall also assume the field is periodic in z (although
this is not necessary and Floquet solutions can also be
readily analyzed?'). For convenience of presentation we
divide the interval 0 <z =< L into two regions. The first
region occupies 0<z=<1L and is called the “map re-
gion.” The second region, L <z <L, is called the “de-
lay region.” The z component of v is assumed to be posi-
tive everywhere, v-(x,y,z) > 0. In the map region the
flow is z independent and incompressible, v(x,y,z)
=vozo+v, (x,y), where v.=vg is constant and v, is the
transverse flow velocity having V-v, =0. Thus a fluid
element entering the map region at a point (x;,y;,0) ex-
its it at a time T]EI:/U() later at a position (xo,yo,i),
and the input and output transverse positions are related
to each other by a two-dimensional area-preserving map,
M, (x¢,y0) =M(x;,y;). In the delay region, we take
v, =0, but we let v: depend smoothly on x, y, and z;
v(x,y,z) =v.(x,y,z)zp with v.(x,y,L) =v.(x,y,L) =v,.
Thus in the delay region the transverse coordinates of
fluid elements remain unchanged (x,y)=(x0,y0), but
elements exiting the map region take different amounts
of time to traverse the delay region;?2 T5(x,y) =fFdz/
v-(x,y,z). In the special case where T, is independent
of x and y, the inputs to the map region at time z all
simultaneously return to the input to the map region at
time t+ 7T, where T=T,+ T, Thus the dynamics is

(a) (b)

F—— - -

FIG. 1. Closed field line acted on by a chaotic planar flow.
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represented by repeated application of M, and the situa-
tion is essentially two dimensional. Hence, no dynamo
action can occur. When T(x,y) =T+ T,(x,y) depends
on (x,y), this reasoning no longer holds, and one might
suspect that there is a possibility that dynamo action
could occur.

We now consider a specific model M(x,y) and T(x,y)
for which we can obtain analytical results. It is assumed
that the fluid is of unbounded extent in (x,y). The flow
in the map region is specified geometrically in Fig. 2.
The flow takes the two-dimensional, square region, S
={x,y|05xs ,0=y=< 1}, at the input plane, z =0,
and deforms it into the shape shown in Fig. 2(c) at the
output plane, x=L. Thus M(x,y) is a ‘“horseshoe
map.” We emphasize that horseshoes of this type can be
expected to arise naturally and that the flow v, which
gives M can be taken to be continuous and as smooth as
we like. We specify T(x,y) as

_|T, inregiona,
T(x,y) {Tb in region b, 3

where T, and T}, are constants, and a and b label the
shaded regions shown in Fig. 2. For our example it is
not necessary to specify the form of the function T(x,y)
outside regions a and b, but we can (and do) require
T(x,y) to be smoothly varying everywhere. Thus our
flow is smooth (no discontinuities or singularities as
occur in other previous work?®). We imagine that at
t =0 the magnetic field through S is directed upward (as
indicated in the figure) and that the field lines close on
each other by circling a finite distance to the left of S.
Thus all the initial magnetic field is contained in a finite
region in (x,y), and the initial magnetic energy per unit
length in z is finite. For our subsequent discussion, we
will neglect the effect of the initial field circling to the

FIG. 2. Deformation of the square S with frozen-in mag-
netic field lines. Three cross sections corresponding to three
values of z are shown (0 <z, <L).
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left of S, since it may be shown?? that it does not effect
our considerations, to follow, in determining the ex-
ponential flux growth rate. Consider a surface y= 7§,
0=< x < 1, and denote the total flux through this surface
per unit length in z by ®(z,7) (we take ® as positive if
the flux is in the positive y direction). Since (1) is a
time-independent linear equation, we look for eigensolu-
tions ®(z,1) =¢(z)exp(st), s=iw+y. Now say we con-
sider the flux per unit length at time ¢ at the output to
the map region, z=L. From Fig. 2 and Eq. (3), we see
that at time ¢ the upward flux per unit length at z=L in
region a is the same as the total upward flux per unit
length which existed at z =0 at the time t — T';. Simil~ar-
ly, at time ¢ the downward flux per unit length at z =L in
region b is equal to the flux per unit length at z=0 at the
time ¢t — T';. These fluxes then flow through the delay re-
gion eventually again arriving at the input to the map re-
gion. Thus ®(0,t) =®(0,t —T,) —®(0,t—T,). Insert-
ing ®(0,1) —exp(st) yields

A =rT+1=0, 4)

where p=T,/T, and A=exp(sT,). Roots of (4) with
|»] >1 [Re(s)=y>0] imply exponential flux growth
(i.e., the flow is a steady D flow).

We now investigate the solutions of Eq. (4). Writing
A as A=re’® and (4) as 1 —A=A~%~") and taking the
magnitude of both sides of this equation, we find that the
roots of Eq. (4) must lie on the following polar coordi-
nate curve in the A plane:

cos@=5[r+r '—p @ D], (5)

This curve is shown schematically in Fig. 3, where r+
denotes the positive real root of r4 —r% ' —1=0 and
r— denotes the positive real root of r~ +(r27!'—1)
xsgn(p—1) =0. Note that r4+ > 1 and r - <1 for all p.
For integer or rational values of p, Eq. (4) has a finite
number of roots which lie on the curve given by (5). For
example, for p=2, A =% (1 £i+/3) which yields stabili-
ty, |A| =1. For p=1, the only root is A =0, which again
yields stability. For integer values of p larger than 2 we
always find instability (i.e., roots with |A| >1). More
importantly, however, for irrational p, Eq. (4) has a
discrete infinity of roots which densely fill the curve (5).
Thus there are roots with || =¢7a arbitrarily close to
r+>1. Hence, if p is chosen at random, we have a D

4;Im(>\) 4Im(>\)

FIG. 3. The curve (5) in the 1 plane.

flow with probability 1.

It is important to note that, while the roots in A are
typically dense on a curve [Eq. (5)], in the s plane they
are isolated. It is instructive to consider an example.
Say p=1+¢€ with 0 <e<1. For € small and positive,
the curve in Fig. 3 is close to a circle of radius 1 centered
at Re(A) =1, Im(1) =0. The curve passes slightly to the
left of A=0 (r - ~€lne ") for ¢ >0. The curve in the A
plane then translates via A =¢'" to the solid curve in the
s plane shown schematically in Fig. 4. To find a second
curve on which the roots also must lie, we write (4) as

1 —Af=—2'"¢ take magnitudes of both sides, and uti-
lize e<1. We obtain
yT,=In2+In|sin(cwT,/2) | , 6)

which is plotted as the dashed curve in Fig. 4. Any roots
must lie on the intersections of the two curves. In fact,
further examination of Eq. (4) shows that only every
other intersection (labeled as dots in Fig. 4) yields an ac-
tual root. Thus, for our example, even the slightest devi-
ation (¢#£0) from the two-dimensional case (¢ =0) typi-
cally produces a steady D flow. Note from (6) that un-
stable roots (y > 0) are possible only if their imaginary
parts exceed a critical value w > w.=x/3€T,. {Thus for
very small € the unstable roots must have very large .
This leads to rapid oscillations in z [in the delay region
the fields vary as exp(—iwf’dz/v.)], with the conse-
quence that for small ¢ the unstable modes are severely
effected by relatively small resistive field diffusion.}

The basic mechanism leading to the D flow in our ex-
ample is similar to that leading to dynamo action in the
nonsteady flow of Ref. 14 and is as follows. For T(x,y)
=const, perfect cancellation of flux occurs (Fig. 1).
When T(x,y) is not constant the existence of a nonzero
frequency of oscillation (imaginary part of s) leads to
phase shifts which alter the magnetic field at different

:iisw
———— 37

— )
| T -Re(s)=y
?{n r- | {
a Tﬂ nry

FIG. 4. Roots in the s plane (dots) for p slightly larger than
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(x,y) positions by a factor expl—iwT(x,y)]. These
phase shifts spoil the perfect cancellation which occurs in
the two-dimensional case and can lead to flux growth.
For example, for Eq. (3) with p=1+¢ and €<, a
phase shift between the strips of n (ie., ewT,=n)
changes the exact two-dimensional cancellation to in-
phase addition, and the flux growth rate is y=In2 [cf.
Eq. (6)]. While it will not be possible to obtain precise
in-phase behavior at all (x,y) points for general M (x,y)
and T(x,y), the basic effect (i.e., mitigation of exact
cancellation) will still be present, and our example indi-
cates that it can be strong enough to lead to growth.
Thus we expect that the D-flow property is common for
steady, smooth, three-dimensional, chaotic fluid flows,
and fast dynamos should consequently be a typical oc-
currence for such flows.
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