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Fermat’s principle shows that a definite convex set of feasible slowness models, depending only on the
traveltime data, exists for the fully nonlinear traveltime inversion problem. In a new iterative recon-
struction algorithm, the minimum number of nonfeasible ray paths is used as a figure of merit to deter-
mine the optimum size of the model correction at each step. The numerical results show that the new al-
gorithm is robust, stable, and produces very good reconstructions even for high contrast materials where

standard methods tend to diverge.

PACS numbers: 42.30.Wb, 03.40.Kf, 43.60.+d, 93.85.+q

Traveltime tomography reconstructs a slowness (re-
ciprocal wave speed) model from measured traveltimes
for first arrivals. The locations of sources and receivers
are assumed known, but the actual ray paths are not
known and must be determined along with the model
slowness. Fermat’s principle'—that the path taken is
the one of least traveltime— has been used extensively in
forward modeling; i.e., given the slowness model Fer-
mat’s principle determines the ray paths. However,
Fermat’s principle may also be applied in an entirely
different way during the reconstruction of the slowness
model using first arrival traveltime data, as we shall
show.

To set notation, let ¢ be the measured traveltime m
vector such that t7=(z,, .. .,1,), where ¢; is the travel-
time along the ith ray path (a superscript T implies the
transpose). We form our model in two dimensions by di-
viding the rectangular region enclosed by our sources
and receivers into rectangular cells of constant slowness.
In three dimensions, the cells are blocks of constant
slowness. Then, s is the model slowness n vector s’
=(s,...,s), with s; being the slowness of the jth cell.
For forward modeling, s and ¢ are related by the equa-
tion

Ms=t, (1)
where M is an m Xn matrix whose matrix elements /; ;
are determined by the length of the ith ray path as it
passes through the jth cell. Equation (1) simply states
that the total traveltime along a ray path is the sum of
the traveltimes through each of the cells traversed by the
ray. Fermat’s principle is often used in forward model-
ing to determine M and therefore ¢ when s is given.

The inverse problem associated with (1) starts with
traveltime data ¢ and attempts to find the corresponding
slowness model s and ray-path matrix M. We will now
depart from traditional methods by applying Fermat’s
principle in a new way. The forward problem (1) is re-
placed by the m feasibility constraints

Ms)i=1. (2)

This fact follows from Fermat’s principle: The first ar-

rival necessarily followed the path of minimum travel-
time for the model s. Thus, (2) must be satisfied by any
ray-path matrix M if s is the true model and therefore
any model that violates (2) along any of the ray paths is
not a feasible model. An exact solution to the inversion
problem is found if and only if all of the inequalities in
(2) become identities for some choice of model slowness
vector 5. (Solutions are generally not unique unless the
ray-path matrix M is of full rank. Uniqueness is ob-
tained by using additional physical constraints.) For
each of the m inequality constraints (2), the limiting
equality is the equation for a hyperplane in the n-dimen-
sional slowness model space. The feasible region is
bounded by these hyperplanes and by the planes deter-
mined by positivity of slowness in all cells j,

Sj>0. (3)

The two sets of inequalities (2) and (3) guarantee that
the feasible region of the model space is convex. Thus,
for fixed ray-path matrix M, the set of all feasible mod-
els s includes all models either inside the feasible region
or on the feasibility boundary determined by M and ¢.

So far the argument has been pertinent only to linear
traveltime tomography (i.e., fixed ray-path matrix M).
However, it is a small step to see that the constraints (2)
imply the existence of a definite convex set in the model
space containing all the feasible models for arbitrary
choices of the ray-path matrix: Since any point s that is
nonfeasible for any particular choice of M must lie out-
side of the global feasibility set, it follows that the inter-
section of the feasible sets for all choices of M deter-
mines the global (nonlinear) feasibility set. This global
set must be convex since it is the intersection of convex
sets. Furthermore, an exact solution of the inverse prob-
lem (i.e., assuming the data are consistent) must lie on
the boundary of this global convex set. Finally, we note
that the location of the global feasibility boundary de-
pends only on the set of measured traveltimes ¢.

Another new concept that is useful in computations is
that of “feasibility violation number” Ny (s). For any
combination of ray-path matrix M, slowness vector s,

© 1989 The American Physical Society 2953



VOLUME 62, NUMBER 25

PHYSICAL REVIEW LETTERS

19 JUNE 1989

and measured traveltimes ¢, the number of rays violating
the constraints (2) is given by

N ()= 3 6l — (Ms),] )

i=1
where the step function 8(x) is defined by

0, forx=<0,

1, forx>0. ()

6(x) = {
The number Ny (s) is equal to zero in the feasible re-
gion. Furthermore, it is clearly a monotonically increas-
ing function of distance from the local feasibility bound-
ary associated with M—once one of the hyperplanes of
(2) is crossed we will never cross it again if we keep
moving in the same direction in the model space. Thus,
Ny (s) is easy to compute and gives us a rough idea of
how close we are to the feasibility boundary.

The feasibility violation number may be used to classi-
fy all models in the nonfeasible region of the model
space. For example, contours of constant N, may be
drawn starting with N, =0 on the feasibility boundary.

Now define «7=(1,...,1), an m vector of ones, and
vT=C(1,...,1), an n vector of ones. Then,
Mv=Lu 6)
and
MTu=Cv. @)

The diagonal matrices L and C have the row sums L; and
column sums C;,

Li=X1l, C=X1l;, 8)
= =1

as their diagonal elements. The quantity L; is seen to be
the total length of path i. The quantity C; is the total
length of all the ray-path segments that pass through cell
J, so we will call this the *““coverage” of cell j. Any cell
with C; =0 is uncovered and therefore lies outside the
span of our data for the current choice of ray paths. We
retain only the covered cells in the reduced slowness vec-
tor § of length 7i =< n. The matrix M may similarly be re-
duced to M by deleting the corresponding columns of
zeros. Finally, the diagonal matrix C is modified to in-
clude only the nonzero sums in (8). For simplicity of no-
tation, we assume that 7 =n in the following discussion.

An eigenvalue problem pertinent for high contrast
reconstructions takes the form

0 M||wm T 0
MT 0] |x =A 0D
where, for A=1, w;=u, and x,=s, is the current best

estimate of the reconstructed slowness. Then, by analo-
gy with (6) and (7),

Msy=Tu, 10)

Wi
ol ©)

Mfu=CL’=bSb, an
where T and D are diagonal matrices with elements
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given by
n
Ti=21,;(s);, forl<i=m, (12)
i=l
and
A < lij C; .
D=2 = ,forl=j=<n. (13)
1

'=I(Sb)j (Sb)j
T/’s are the traveltimes of the current ray paths through
the current model s,. D, is the coverage of the jth cell
divided by the slowness of that cell; the dimensions of D;
are (length)?/time—or, the same as that of a diffusion
coefficient.
Now we will transform (9) to a canonical form using

0 4 0 T2 12
AT o) D TVPMTT 0 (14)
and
B2 T l/zwx
Z = b |/2xx (15)
The eigenvalue problem (8) is then transformed into
0 A||{n Bt
A7 0l lz | =Mz | (16)

We wish to emphasize now that, with the normalization
that has been performed to produce A, The current
slowness model s, gives rise to the eigenvector of (16)
with the highest eigenvalue and that eigenvalue is unity,
i.e., ATAZ[, =2Zp.

Now we will consider two weighted least-squares-
fitting problems.? In both examples, the weights T and D
have been incorporated directly into the normalization
factors for the matrices 4, and the eigenvector com-
ponents y, and z,. The first problem is to find the slow-
ness s =ys; in the direction of s, giving the best least-
squares fit to the measured traveltime data. If the nor-
malized traveltime measurement vector is given by

p=T7""%, a7)
then the problem is to find y such that
v(y) =G —Ayz,) TG — Ayzy) (18)
achieves its minimum. This value is found to be
zf ATy zf ATy
Y T T, (19
Zp A Azb ZhpZp

since 47 Az, =z,. If the optimum scale factor has al-
ready been found and the value z, scaled appropriately,
then y=1 in (19). We will assume this is the case for
the remainder of this discussion.

Now consider a second weighted least-squares prob-
lem. Consider the objective function

0,2)=0G—A2)TG —Az)+tuz—2z,)"(z—2z,), (0)

where u is a damping parameter.>* The minimum of
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(20) occurs at z =z, where z, satisfies
(ATA+ul)(z,—2,)=AT)—z,. (1)

To arrive at (21) we again used the fact that 47Az,
=2Zp.

Now notice that the right-hand side of (21) is orthog-
onal to z, i.e.,

25 (ATH —z,)=0. (22)

Equation (22) follows from (19) when y=1. Applying
z{ to (21) then gives

(l+y)zbr(z,,—zb)=0, (23)

so that z, lies in a hyperplane orthogonal to zy.

Figure 1 illustrates the ideas presented so far and will
also help to clarify the ideas underlying the new algo-
rithm we have developed.

Given a set of transmitter-receiver pairs and any mod-
el slowness s, Fermat’s principle may be used to find the
ray-path matrix M associated both with s and with any
slowness ys (where y > 0) in the same direction as s. An
optimum scale factor ¥ may be found by doing a weight-
ed least-squares fit to the traveltime data.

Having found the optimum slowness s, =7vs in the
given direction, we next attempt to improve the model by
finding another direction in the slowness vector space
that gives a still better fit to the traveltime data. As
many others have done, we first compute a damped
least-squares solution s, =D ~ 'z, using (21). Next we
note that both of the points found so far are guaranteed
in the nonfeasible part of the vector space—at least one
and generally about half of the ray paths for both of
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FIG. 1. Diagram to illustrate the key points in the new non-
linear traveltime tomography algorithm. The variable z is the
wave slowness s weighted by the square root of the modified
coverage matrix D [see Eq. (13)]. The axes are the weighted
slownesses for any two cells (j and k) in the model. Point zp is
the initial value for the next step of the iteration scheme. Point
z, is the solution of the damped and weighted least-squares
problem. Point z; is a linear combination of z, and z, chosen
becaue it has the smallest number of feasibility violations.
Point z, is the unique point on the feasibility boundary in the
same direction as z;.

these models will have traveltimes shorter than that of
the measured data. Furthermore, although the point s,
gives a better fit to the traveltime data, this fit is certain-
ly spurious to some extent because it is based on the
wrong ray-path matrix; the ray-path matrix M used in
the computation of s, from s, is the one that was correct
for slownesses along the direction s,. Thus, both of the
points we have found so far lie off the feasibility bound-
ary and the second point s, is of questionable worth be-
cause its value was also obtained in an essentially incon-
sistent manner.

Recall that the solution of (1), if one exists, must lie
on the feasibility boundary. So we would like to use s,
and s, to help us find a point on this boundary that is op-
timum in the sense that it is as consistent as possible (i)
with the ray-path matrix M, (ii) with the measured trav-
eltimes ¢, and (iii) with the feasibility constraints. The
fact that traveltime error may be reduced by moving in
the direction of s, may still give us an important clue
about the best direction to move in the vector space; i.e.,
we may want to move in the direction s,-s, but perhaps
we should stop before we arrive at s,. How far should
we move in this direction?

If we consider Fig. 1, we are reminded that the feasi-
ble region is convex. Therefore, there may exist a point
s; between the points s, and s, that is closer to the feasi-
ble region than either of the two end points. If we could
find this point s, and then scale up to the point in the
same direction lying on the feasibility boundary, then we
have found sy in the figure. In principle, it is possible to
find the point on the line s,-s, closest to the feasibility
boundary. However, it is much easier to compute the
feasibility violation number Ny (s). As we move in the
direction s,-s, from s,, we generally find that this num-
ber achieves a minimum value at some intermediate
point. This point of minimum Ny (s) is the point s; in
the figure.

It is not hard to prove that all three of the points sp,
s, and s, are distinct unless we have found an exact
solution to the inversion problem. So unless we have al-
ready solved the problem, these three points form a tri-
angle and the size of the triangle gives us an estimate of
how far we are from a solution.

These ideas have all been repeatedly confirmed in a
large number of reconstructions on synthetic examples.
In Fig. 2, three examples of typical results (in the mid-
dle) obtained using our new reconstruction algorithm on
a structure with a low speed anomaly (20%, 50%, or
100% lower than background) on top and with a high
speed anomaly (20%, 50%, or 100% higher than back-
ground) on the bottom are compared with the best re-
sults of a standard damped least-squares algorithm (on
the left) and with the target model (on the right). The
reconstructions were performed on a model structure
with 8x16 cells using 320 rays—including 256 rays
from left to right and 64 rays from top to bottom. The
most startling example (not shown) is one in which the
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wave speed contrasts are 100%. Then, we find that the
standard damped least-squares algorithm becomes so un-
stable after about twenty iterations that the results be-
come singular, while our new algorithm is completely
stable and produces the result shown in Fig. 2 after
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FIG. 2. Three examples comparing the slowness results
(from left to right) of a standard damped least-squares recon-
struction with the results of our new algorithm and with the ex-
act target solution. From top to bottom, the examples have
anomalies that are 20%, 50%, and 100% compared to the back-
ground. In each case the top anomaly is slower than the back-
ground while the bottom anomaly is faster. Superimposed on
the reconstructions and on the target images are samples of
some of the bent ray paths either used in the reconstructions or
obtained in the forward calculations of the traveltime data.
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about ten iterations—and also after hundreds of itera-
tions, if we force it to make a minimum percentage (say
1%-10%) correction at every step (otherwise the method
converges quite rapidly). Our algorithm has been
checked on many other synthetic examples and also on
real seismic and electromagnetic data, and it has always
been found to converge to a reasonable solution set.

This visual comparison is not really “fair” to our
method in the sense that we have chosen typical results
from the convergence set for our new algorithm while we
compare them to the best results for the standard algo-
rithm. We can make this comparison for these synthetic
examples because we know the correct answer and there-
fore know when the standard algorithm starts to diverge.
In all examples shown, the standard damped least-
squares method produces its best results in just a few
iterations and then wanders away from it— producing
better and better fits to the traveltime data, but worse
and worse fits to the target model.

For real problems with high contrasts and noisy data,
the damped least-squares method does not converge and
we never know when to terminate the iteration sequence.
By contrast, our new algorithm converges quickly (in
15-20 iterations) to a solution in its convergence set
(i.e., not a single point, but a small region of the slow-
ness vector space with qualitatively very similar models).
Stable iteration to such a convergence set is the most
that could be expected when the traveltime data have er-

rors and are therefore inconsistent.
We have shown that Fermat’s principle plays an essen-

tial role in wave speed reconstruction via traveltime to-
mography. Not only does this principle determine the
ray paths once a slowness vector is given, but it also
determines which slowness vectors are feasible and non-
feasible. Furthermore, it has provided the insight needed
to find a new, stable iterative reconstruction algorithm
for nonlinear traveltime tomography.
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ground. In each case the top anomaly is slower than the back-
ground while the bottom anomaly is faster. Superimposed on
the reconstructions and on the target images are samples of
some of the bent ray paths either used in the reconstructions or
obtained in the forward calculations of the traveltime data.



