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Electrodisintegration of °Li Studied with the Reaction *Li(e,e’'p)
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The ®Li— p+ (na) spectral function for the proton-knockout reaction °Li(e,e’p) has been measured

in parallel kinematics in the missing-momentum range — 100 < p,, <200 MeV/c.

The data below a

breakup are well described by a three-body (anp) model of °Li. The shell model with discrete energy
eigenstates cannot describe the data. The experimental spectroscopic strength below a breakup amounts
to 0.79(10), compared to 0.87 as predicted by the three-body model and 1.33 as calculated from a
schematic harmonic-oscillator shell model. The discrepancy between the predictions of the two models is

discussed.

PACS numbers: 25.30.Fj, 21.10.Jx, 27.20.+n

The nucleus ®Li constitutes a transitional case between
few-body systems for which exact calculations can be
performed with the Faddeev technique and heavier nu-
clei whose static and dynamic properties are commonly
described in the shell-model approximation. Theoretical
models for the structure of ®Li usually follow either the
shell-model or the three-body approach. In nuclei with
A=12, recent (e,e'p) data have shown appreciable
quenching of the single-particle strength relative to the
shell-model estimate, !~* whereas such a quenching is not
observed for *He and *He.*> Hence the °Li(e,e’p) data
upon comparison with shell-model and three-body calcu-
lations may provide a clue as to the mechanism for this
quenching in heavier nuclei.

A few SLi(p,2p) and °Li(e,e’p) experiments have
been reported.®’ In these data, one has observed the ab-
sence of a minimum at zero recoil momentum in the
overlap function of °Li with the final state p+ (na), at
variance with the prediction of a pure p-shell model.
However, the comparison of the data with theoretical
calculations®’ is hampered by distortion effects in the
(p,2p) reaction and an inadequate energy resolution in
the (e,e'p) experiment. In this paper we present high-
resolution spectral-function data extracted from absolute
cross sections of the reaction °Li(e,e’'p)na.

The experiment was performed with the electron ac-
celerator MEA and the dual spectrometer setup at
NIKHEF-K.® Using an enriched (98.7%) °Li foil with a
thickness of 13.0 mg/cm?, (e,e'p) coincidence cross sec-
tions were measured in parallel kinematics; i.e., the pro-
ton with missing momentum p,, =p—gq is knocked out
with momentum p parallel to the electron momentum
transfer q. A range of p, from —100 to 200 MeV/c
was covered by measurements at incident energies of 320
and 480 MeV. The relative (p->He) kinetic energy in

the center-of-mass system 7., was kept constant at
64.8 MeV. The spectral function S(E,,p,), i.e., the
probability of finding a proton with binding energy E,,
and momentum p,, in the target nucleus, was extracted
from the coincidence cross section in the standard
manner.! A missing-energy spectrum integrated in the
region 15 <p,, <65 MeV/c is shown in Fig. 1. The
peak at E,,=4.59 MeV, 0.89 MeV above the 6Li—»p
+n+a separation energy, corresponds to the J™= 3~
quasibound state of *He, while the one at 21.35 MeV
corresponds to the ®Li— p+ (d+*H) breakup channel
with J®= 3" The tail from 5 MeV up to 21 MeV is not
caused by radiative effects, which were unfolded, but is
due to the unbound nature of the residual (na) system.
The missing-energy resolution of 120 keV is mainly due
to the straggling of protons in the target. By using the
"H(e,e'p) peak due to a small hydrogen contamination
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FIG. 1. Missing-energy spectrum of the ®Li(e,e'p) reaction.
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of the °Li target and determining the E,, position of the
low-energy edge of the 3% excited state, the missing en-
ergy was calibrated with an uncertainty of 75 keV. A
careful estimate of all experimental uncertainties result-
ed in a total systematic error on the spectral function of
6% and a 1-MeV/c uncertainty in the determination of
Pm-

In Fig. 2 is shown the momentum distribution p(p,,)
= [1s£S(E,.,pm)dE,, where the integration is performed
over the range 4.1 < E,, <4.9 MeV, which includes the
main part of the ground state of He. Besides the sta-
tistical uncertainty the error bars also account for the
missing-energy uncertainty of 75 keV. The contribution
of the radiative tail of the hydrogen contaminant to the
data shown in Fig. 2 is less than 1%. For |pm| =175
MeV/c the hydrogen tail increases rapidly and therefore
the data near p,, =0 MeV/c have been omitted.

Three-body (pna) models®”-? are used to describe the
reaction SLi(e,e'p)na for relative (n-a) energies below
20 MeV. In the full repulsive model all dominant com-
ponents of the a/V interaction at low energy, i.e., S/,
P,;, and P3/; are used, while the S, alV interaction is
taken to be purely repulsive. The VN interaction has be-
sides the S contribution also a 4% D-state component.
By solving the three-body Schridinger equation for the

41<E <49 MeV
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FIG. 2. Momentum distribution for the ®Li(e,e’p) reaction
(4.1 <E, <4.9 MeV). The solid curve represents the results
of a PWIA calculation in the three-body model of Ref. 9. The
shaded band represents the range of DWIA calculations for
four different optical potentials.

2926

®Li ground state and calculating its overlap amplitude
with the p+ (na) system, the °Li(e,e’p)na spectral
function can be calculated in the plane-wave impulse ap-
proximation (PWIA). The model is formulated in the
center-of-mass system, eliminating the need of center-
of-mass corrections. Once the two-body interactions are
determined, there are no free parameters or scale factors
to be set in the three-body model.

The solid curve in Fig. 2 represents the theoretical
plane-wave momentum distribution ppw(p,,). An unfac-
torized distorted-wave impulse-approximation (DWIA)
calculation with the DWEEPY code'® has been performed
to account for the final-state-interaction (FSI) effects.
Since this code needs a bound-state wave function in r
space as input, ppw(p,) has been parametrized with
harmonic-oscillator eigenfunctions ¢,/ (p,,):

2

+

2

7 7
pPW(pm) = ;lano%o(Pm) ;lanl‘ﬁnl(pm)

)

where a,; represents the amplitude of the corresponding
eigenfunction. As the main contribution to the °Li— p
+ (na) overlap consists of /=0 and /=1 partial waves,’
only those / values are included in the fit. For the
harmonic-oscillator length parameter the value 5=2.03
fm is adopted.!' It was found that for n=7 adequate
convergence is obtained.

Four different sets of optical-potential parameters
have been used in the FSI calculations. Two sets are de-
rived from p-*He scattering data measured in the proton
energy ranges 31-55 MeV '2 and 85-1240 MeV,'? re-
spectively; two other sets are derived from p-°Li scatter-
ing data measured in the proton energy range 14-45
MeV '* and at 100 MeV,'> respectively. Except for the
latter case, all sets are extrapolated to a value of 78.2
MeV, corresponding to T, =64.8 MeV. The envelope
of the four calculated DWIA curves, represented in Fig.
2 by the shaded band, shows that the uncertainty due to
the choice of the optical potential is about 5% at low p,,,
increasing to 20% at high p,,.

As shown in Fig. 2, the three-body model describes the
experimental momentum distribution very well, in par-
ticular in the region around p,, =0 MeV/c where the dip
structure is nicely reproduced. The nonzero value of
p(pm) at p, =0 MeV/c is due to the na rescattering in
the final state in a relative S wave, which has a nonzero
overlap with components of the same angular momentum
in the °Li ground-state wave function.’

The main features of the shell-model description for
®Li can be understood without performing a sophisticat-
ed calculation. In the schematic 0Aw shell model, the
®Li ground-state wave function has a (0s)*(0p)? con-
figuration, whose orbital symmetry is represented by the
partition [42].'® Picking up one proton populates *He
states of orbital symmetry [41] or [32] with a total spec-
troscopic strength of 1.33 and 1.67, respectively. These
numbers can be obtained by counting the Young ta-



VOLUME 62, NUMBER 25

PHYSICAL REVIEW LETTERS

19 JUNE 1989

bleaus'¢ that correspond to the above-mentioned parti-
tions. The spectroscopic strength for the knockout of a
proton from the p shell, leaving He in a [41] partition,
amounts to 1.2. This value includes the center-of-mass
correction factor 4/(4—1)=6/5."" From the remain-
ing strength, i.e., 1.8, a small amount of 0.133 is going to
a 37 state with orbital symmetry [41]. Below about
16.7 MeV of excitation energy the He states are expect-
ed to be dominantly of [41] orbital symmetry. In 1A
shell-model calculations'®'® a §* state in He with al-
most pure [41] symmetry is calculated at about 8-MeV
excitation energy.

In Fig. 3 the three-body and shell-model approaches
are compared with the data via the quantity p(p,,)
=[2£S(E,pm)dE,,, where the integration is performed
over the E,, interval below a breakup (3.7 <E,, <19.7
MeV). The three-body calculation agrees well with the
data. The shell-model calculation with discrete energy
eigenstates is inadequate, although it also predicts a
filled-in minimum at p, =0 MeV/c, due to the presence
of the +* state below a breakup.

In Fig. 4 the theoretical PWIA momentum distribu-

tions are compared via the sum rule P(p)=4rn
——
r
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FIG. 3. Momentum distribution for the reaction °Li(e,e'p)
below a breakup (3.7 <E, <19.7 MeV). The solid and
dashed curves represent the results of a PWIA calculation in
the three-body model of Ref. 9 and the 0Aw shell model, re-
spectively. The corresponding ranges of DWIA calculations
for four different optical potentials are represented by the
light- and dark-shaded bands, respectively.

x [8p(pm)pkdpn which represents the spectroscopic
strength. The distortion-corrected experimental data, in-
dicated by the shaded band, encompass the uncertainty
in the optical potential and the statistical error. The
spectroscopic factor as predicted by the three-body mod-
el and the shell model amounts to 0.87 and 1.33, respec-
tively, to be compared with the experimental result of
0.79(10). The error includes the statistical uncertainty
and the uncertainty in the extrapolation of the momen-
tum distribution to infinity, estimated to be 4%, the
above-mentioned systematical error of 6%, and an uncer-
tainty from the description of the distortion effects, es-
timated to be 10%.

The spectroscopic factor is well predicted by the three-
body model, whereas a considerable quenching is found
relative to the shell-model value. We conclude that the
shell-model wave functions for >He and °Li are not real-
istic. Other evidence for this stems from the following:
(i) Instead of a true continuum wave function for the
A=5 system, a He wave function with discrete energy
eigenstates is predicted by the shell model; (ii) the shell
model 8% underestimates the experimental root-mean-
square charge radius for ®Li by 15%. In the shell model,
which correctly takes into account antisymmetrization
effects (at the nucleon level), the p-shell radial wave
function may therefore overlap too strongly with the s-
shell radial wave function. If there were no spatial over-
lap at all between these s- and p-shell wave functions,
the spectroscopic strength for knockout of a p-shell pro-
ton would simply be 1.0 instead of 1.2 given by the
schematic harmonic-oscillator shell model. In the three-
body model, which underestimates the charge radius by
only 6%,' the a particle is regarded as structureless and
the effect of the antisymmetrization is accounted for in
part by the S/, partial wave of the a-N potential.
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FIG. 4. Sum rule for the spectroscopic strength below «a
breakup. The solid, dashed, and dot-dashed curves represent
the results for the three-body model and the Ohw and 2Aw
shell models, respectively. The shaded band represents the ex-
perimental results corrected for FSI effects.
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The calculated wave functions presumably become
more realistic by increasing the shell-model space. In
Fig. 4 the results of a 2Aw shell-model calculation are
shown as well. The spectroscopic factor below a breakup
amounts to 1.20, a decrease of about 10% with respect to
the 0hw shell-model value. This reduction implies that
more strength is to be found beyond a breakup. Based
on the value of 0.71 for the spectroscopic factor for the
strength below a breakup obtained in an {a+d, He+ p}
cluster model,?* whose basis can be described in a very
large shell-model space, it is expected that a further in-
crease of the model space would bring down the spectro-
scopic value considerably.

In summary, the experience in (e,e'p) reactions that
few-body models in their description of light systems cal-
culate spectroscopic factors in agreement with the data
whereas shell models for heavy nuclei overestimate spec-
troscopic factors is now acquired for one and the same
nucleus, °Li. The three-body (anp) model is quite cap-
able of describing the unbound character of *He below «
breakup. Although also the 04w shell model predicts a
filled-in minimum at p,, =0 MeV/c for the momentum
distribution of the strength below a breakup, it overesti-
mates the spectroscopic factor by 68%. Increasing the
shell-model space to 2A® reduces the spectroscopic fac-
tor for the strength below a breakup by 10%.
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