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Universality of Cubic-Level Repulsion for Dissipative Quantum Chaos
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The quantum signature of chaos in dissipative systems is cubic repulsion of their generalized energies
(eigenvalues of the generators of the dynamics) in the complex plane. As in the Hamiltonian case the
degree of repulsion is the same under temporally homogeneous conditions and periodic driving. Some-
what surprisingly, however, cubic repulsion prevails irrespective of whether the Hamiltonian embedding
of the dissipative system obeys time-reversal invariance. Even antiunitary symmetries of the dissipative
generator itself cannot modify the repulsion exponent. In establishing the universality in question we
find the generalization of detailed balance for periodically driven damped systems.

PACS numbers: 05.45.+b, 03.65.—w

As is well known, Hermitian Hamiltonians H as well
as unitary Floquet operators F with a nonintegrable clas-
sical limit require two, three, or five controllable parame-
ters for an eigenvalue crossing to become a generic possi-
bility rather than an unlikely exception. ' The number
n in question is determined by the set of unitary and
antiunitary symmetries of H or F. Certain universal
features of the spectra of eigenvalues of H and eigen-
phases (quasienergies) of F are distinct for each of the
three classes of Hamiltonians and Floquet operators.
Most notably, the degree of repulsion of neighboring en-
ergies or quasienergies is given by n —l.

A fourth universality class of Hermitian and unitary
operators comprises the cases with integrable classical
limits. These have n=l; more specifically, their levels
typically have a tendency to cluster just as if arising as
events in a Poissonian random process.

Matrices not restricted by Hermiticity or unitarity
have recently found applications as generators of dissipa-
tive quantum maps. Such maps arise for periodically
driven systems with damping, as stroboscopic period-to-
period descriptions of the time evolution of the density
matrix. The eigenvalues of the corresponding matrices
are in general complex and, for stable systems, smaller
than or at most equal to unity in modulus. In the limit
of zero damping when the generator becomes unitary the
eigenvalues all lie on the circumference of the unit circle
around the origin. As the damping is increased, howev-
er, the eigenvalues wander towards the origin; expected
from that tendency is, in general, only one eigenvalue at
unity which pertains to the stationary density matrix of
the map.

Defining the spacing S between two eigenvalues of a
general matrix as their Euclidean distance in the com-
plex plane, for each eigenvalue a nearest neighbor can be
found and the distribution P(S) of nearest-neighbor
spacings can be established.

By numerically diagonalizing the generators for a
class of periodically driven damped spins the spacing dis-
tribution was recently shown to display linear and cubic

"level" repulsion when the classical motion is predom-
inantly regular and chaotic, respectively,

S, regular,P(S)—S, chaotic,

for S 0. In fact, the respective distributions P(S)
turned out to be well described by those of a Poissonian
randotn process in the plane and of Ginibre's ensemble of
general complex random matrices.

An interesting question now arises as to whether the
generators of classically nonintegrable dissipative quan-
tum dynamics can fall into diA'erent universality classes
with diA'erent degrees of level repulsion. A stimulus to
investigate that question may be seen in the fact that any
dissipative motion can be understood as a subdynamics
of the Hamiltonian motion of the system in consideration
coupled to a heat bath. The corresponding total Hamil-
tonian may or may not have antiunitary symmetries
(time reversal, conventional or generalized) and may
therefore, if classically nonintegrable, display any of the
universal degrees of level repulsion mentioned above.
Moreover, there is at least one important property by
which a dissipative motion reveals whether or not the un-
derlying microscopic dynamics is time-reversal invariant:
Detailed balance holds if and only if the embedding has
a Hamiltonian with an antiunitary symmetry.

A bit of numerical evidence for the cubic repulsion of
complex levels to be robust against changes of antiuni-
tary symmetries of the microscopic embedding was
presented in Ref. 7. Here we propose to demonstrate
that no other universality classes of nonintegrable dissi-
pative maps exist, at least as far as the degree of level
repulsion is concerned. Our argument is based on almost
degenerate perturbation theory and thus is similar to the
one used to find the well-known universality classes of
Hermitian and unitary matrices. '

Imagine two complex eigenvalues of a matrix D to un-
dergo a close encounter when a parameter in D is varied.
We may assume that the corresponding two eigenvectors
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The spacing distribution for a matrix of large dimension
is then accessible as

P(S) =&a(S
I D+ ——D I )), (3)

the average being over all close encounters in the spec-
trum of D or, formally speaking, over the matrix ele-
ments D;~ with suitable distributions W~(D;~) for each of
them. Since we inquire about the behavior of P(S) for
S 0 we must avail ourselves of the 8';~ for D;~ 0
only. The crucial property yielding universal behavior of
P(S) is

(4)

In the case of unitary or Hermitian matrices D the in-
tegrals in (3) need not be evaluated explicitely to find
P(S) for small S. Rather, by simply rescaling the in-

tegration variables as D;~ SD;~, using (4), and realiz-
ing the number of non-negative terms in the discriminant
in (2) to be just n, one finds the power law' P(S)

Sn —
1

When dealing with general matrices, however, the
discriminant in (2) is not a sum of non-negative terms.
The distribution P(S) must therefore be determined by
actually integrating over the four D;J in (3). That ele-
mentary task involves the following four types of com-
plex integrals: (i)

d x d y W(x) W(y) 6 (z —xy ) —ln
I
z I,

„d'x W(x)~-(z —x') —I/I z I,

W(y)
J d'x d'y ln I y I

6'(z —x —y) -const w 0,IxI
and (iv)

d-'x W(x)S'-(S —
I
~x I )-S'.

These auxiliary integrals are all meant in the limit of
small Iz I and S; the W(x) are assumed to obey (4).
We thus find

P(S)—S for S 0.

In deriving (5) we have assumed the elements of D;~
unrestricted by any symmetries. That assumption is
justified when the Hamiltonian embedding has no gen-

are known for a particular value of the parameter in

question. By diagonalizing D in that two-dimensional
space the fate of the eigenvalues throughout the en-
counter is found. Especially, the diA'erence of the two ei-
genvalues arises as

D+ —D —=i(Dii —D22)'+4Di2»i~' '

eralized time reversal and thus displays quadratic repul-
sion of adjacent energy levels. We now proceed to show
that the D;~ remain efIectively unrestricted even if the
embedding does have an antiunitary symmetry. To that
end we must be a little more specific about the embed-
ding 1+% which consists of the system S under con-
sideration and a reservoir %. For the sake of definiteness
we consider periodically driven systems for which a stro-
boscopic period-to-period description involves a unitary
Floquet operator F. The density operator W of 1+%
obeys the unitary quantum map 8'„+

~
=FR'„F in which

the discrete time n=0, 1,2, . . . counts the number of
periods passed. We are interested in a stationary regime
corresponding to a density operator commuting with F,
W =FWF . The assumed (generalized) time-reversal
invariance of the dynamics of S+% is meant as imply-
ing TFT ' =F and T8'T ' =8' where T is some an-
tiunitary operator.

For our purposes we need correlation functions of two
(not necessarily Hermitian) observables A and 8,
(A {n)8)=trgpA (n)BW, where A (n) =F "AF". Con-
ventional arguments' '' can easily be extended to our
discrete-time dynamics to show that the assumed time-
reversal invariance entails the identity'"

(A(n)8& =(8(n)A), A =TA T '= TA. ' (6)

We intend to employ the foregoing identity for the case
where 8 and 8 are observables of 4' alone, i.e., behave
like unity with respect to R. Both correlation functions
in (6) may then be calculated using the dissipative sub-
dynamics of S alone, which in the situation of interest is
described by a dissipative map for the reduced density
operator p„=try@' of 1,

pn+ t =Dp~ . (7)
The correlation function (A(n)8) can be written with
the help of the generator D as '

(A(n)8) =tr AD"(Bp) =tr BpD "A .

In order to similarly express (8(n)A) we must realize
that the antiunitary operator T can be given a meaning
with respect to observables of S. For S+% there is no
loss of generality in writing T as the product of the
complex-conjugation operation C and two unitary op-
erators Y+ and Y& which refer, respectively, to S and

T = Y~YqC. It is then easy to see that
4 =z.A =

YUCCA CYg ' =zgA. With Tg= YgC as the
representative of the time-reversal operation at our
disposal we can read and calculate both correlation func-
tions in the identity (6) without further reference to the
heat bath O'. Especially, by using the Tz invariance of
the stationary reduced density operator p and assuming
the existence of p ', we have

(8(n)A& =tr, (.,8)D"{(.,A)p)

=trgBp(zgp) 'D"(zgpA) .
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(rttp)

'Droop

=D', (10)

a property identical in appearance with detailed balance
for the generator of infinitesimal time translations of a
dissipative system with a time-reversal-invariant auton-
omous Hamiltonian embedding. ' We have, in fact, de-
rived the analog of detailed balance for the stroboscopic
evolution of periodically driven dissipative systems.

Since the map (7) must conserve the Hermiticity of
the density operator of S, the generator D must obey
(DA) =DR for any non-Hermitian operator A. It is

easy to see that the latter property, together with the
condition (10) for detailed balance, implies that a right-
hand eigenoperator A of D is accompanied by a left-hand
eigenoperator

W'=(rp)

pertaining to the same eigenvalue X. The pairs of left-
and right-hand eigenoperators form a biorthogonal sys-
tem, (w,'I w, & =a,,

The 2x2 matrix describing a close encounter of two
eigenvalues D~ may now be written as D;i =(2;

IDAHO&,

where A; and A; are two pairs of left- and right-hand
eigenvectors of a generator D infinitesimally close to
D with respect to some control parameter of the dissipa-
tive dynamics. Detailed balance is assumed to hold for
both D and D; it is important to realize, though, that
the condition (10) involves the in general, diA'erent sta-
tionary eigenoperators p and p of D and D (o). The di-
agonal elements Dii and D22 cannot be expected to be
related to one another by detailed balance since even in

the zero-damping limit they are left independent by
time-reversal invariance. Less obvious is the fact, to be
revealed presently, that the symmetry D|2 =D21 imposed

by time-reversal invariance in the zero-damping limit
breaks down for finite damping. But indeed, we may
rewrite Diz=(A| I DA2& by using (11) to express Al and
A2 in terms of po and, respectively, A i and A2,' we then
employ detailed balancing for D according to (10) and
use the definition of the adjoint tetrad D with respect to
the scalar product of observables to arrive at

(w| IDw2&=(po&2p '
IDpo '&ip&

While this latter identity is easily seen to reduce to the
symmetry Di2=D2i in the zero-damping limit, it does
not imply any relation between the two matrix elements
Di2 and D21 alone in the dissipative case. Rather, if we

The inverse of the linear tetradic operator rqp is defined
to act on arbitrary observables Xof 1 as

(rgp) 'X=p rg 'X=p 'Tg 'X Tg.

The identity (6) holds for arbitrary observables A and
B of S and therefore implies an important property of
the generator D. Indeed, by comparing (7) and (8) we
find

imagine po Alp expanded in terms of the complete set
of right-hand eigenoperators of D and, similarly,
poA2p

' in terms of the corresponding left-hand eigen-
operators, we see that (12) relates D|2 linearly to all the
other matrix elements of D; such a "global" relation does
not, of course, restrict the two-by-two matrix describing
the near miss of two eigenvalues of D. We must con-
clude that for finite damping the repulsion of two eigen-
values is insensitive to whether or not D obeys detailed
balance, i.e., to whether or not the embedding of the dis-
sipative system into a larger Hamiltonian one is time-
reversal invariant.

Incidentally, if the generator D itself has a covari-
ance' ADA ' =D, with A antiunitary and A =+1,
of whatever physical origin, conventional arguments' "
would reveal the symmetry Di2=D2~. Still, since in the
dissipative case D is neither Hermitian nor unitary, the
degree of level repulsion would remain cubic to within

only a logarithmic correction. Indeed, by repeating the
elementary integration leading to (5) we now find
P(S)-S'lnS for S~0. Similarly, if D displayed a
Kramers kind of degeneracy (due to ADA ' =D, with
A antiunitary and 2 = —1), the pairwise-degenerate ei-
genvalues would also repel cubically. As was shown in

Ref. 4 the close encounter of two eigenvalues must then
be described by a 4x4 submatrix of D. The correspond-
ing spacing of eigenvalues I D+ D I

leads —to
P(S)—S' as is readily checked by again going through
the integration routine described above.

We would like to conclude by pointing out that all of
the above results hold unchanged when D is the genera-
tor of infinitesimal time translation of some master equa-
tion rather than of discrete-time quantum maps. Cubic
level repulsion thus appears as a universal property of
dissipative quantum dynamics with a chaotic classical
limit. '
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