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Interdiffusion during the Formation of Amorphous Alloys by Mechanical Alloying
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By probing the Ni content of Zr crystallites as a function of milling time using Auger spectroscopy, we
report the first direct measurements of the interdiAusion which takes place during the amorphization of
Ni-Zr by the mechanical alloying of pure-metal powders. Based on the concentration variation of Ni in

Zr as a function of the milling time and using a simple interdiA'usion model, we can estimate an eAective
local temperature at the collision site.

PACS numbers: 66.30.Fq, 61.40.+b

Recently, ' it was shown that an amorphous alloy can
be formed by the isothermal annealing (below the cry-
stallization temperature) of a multilayer metallic system
composed of pure elements with large negative heat of
mixing, the amorphous phase growing in a planar way
from the interfaces. The negative heat of mixing pro-
vides the thermodynamic driving force for the amorphi-
zation reaction and contributes to the kinetics by in-

creasing the interdiA'usion coefficient. Another new

technique for producing amorphous powders is mechani-
cal alloying (MA) of pure crystalline powders or in-

termetallics. At first, the amorphization by MA of in-

termetallics was attributed to the formation of local
melts, produced by the colliding balls, which solidify rap-
idly to form microscopic amorphous regions. Schwarz,
Petrich, and Saw, however, concluded that this process
does not involve melting. They estimated that the peak
temperature during the collision is not more than 30 to
40 deg above the average processing temperature. For
their part, the amorphization was due to the accumula-
tion of structural defects which raise the free energy of
the intermetallic above that of the amorphous alloys.
More recently, Eckert et al. , using a similar approach,
argue that the actual local temperature can reach values
as high as 400'C, causing partial crystallization in some
cases. For the pure-elemental powders, the amorphiza-
tion could be attributed to a solid-state interdiAusion re-
action as in the case of the thin-film coupled system, the
kinetics being controlled by the structural defects gen-
erated during the milling process. Schwarz and Koch
found that for the Ni-Ti system the amorphous-phase
production rate (APPR) is approximately the same
whether we start the MA using a mixture of the pure
components or the corresponding crystalline intermetal-
lics, suggesting that the interdiA'usion is not a limiting
factor and the heat of mixing plays only a minor role in

controlling the kinetics of amorphization. For Ni-Zr, we
will show that the APPR is maximum when the concen-
tration reaches approximately the thermodynamic criti-

cal value for single amorphous-phase formation.
The samples were prepared from 99.9% pure-

elemental powders. The particles size range from 44 to
74 pm for Ni and from 44 to 250 pm for Zr. The
powders were mixed in the ratio NiZr2 and sealed under
argon atmosphere in a steel container (70 ml maximum
load) with three 0.5-in. -diam steel balls. The total mass
of the powders was about 7 g. The MA was performed
in a SPEX 8000 Mixer Mill. A small quantity of
powder was picked at regular intervals for analysis. The
x ray was performed on a Philips diA'ractometer with Mo
Ke radiation. A PHI 660 scanning Auger microscope
was used for chemical analysis. The thermal properties
of the powders were investigated using a Perkin Elmer
DSC-4 calorimeter.

Figures 1(a) and 1(b) show the x-ray patterns of the
powder mixture as a function of the milling time. Dur-
ing the first hour, the intensity of the x-ray peaks de-
creases rapidly and the width increases indicating that
the size of the crystallites decreases sharply. There is no
significant shift in the position of the major x-ray lines as
a function of time. After 2 h, a broad peak located
around 17 deg and shown in Fig. 1(a) appears. This
broad peak, which is characteristic of an amorphous
phase, is clearly visible after 3 h of milling time [Fig.
1(b)]. At 8 h, the powder is almost completely amor-
phous. Figure 2 (solid line) shows the normalized frac-
tion of amorphous phase as a function of milling time
calculated from the size of the crystallization peak using
a diAerential scanning calorimeter. The dashed line is
the derivative of the solid line and indicates that the
maximum APPR occurs at 3 h of milling time in agree-
ment with the x-ray results.

In order to study the interdiAusion reaction during the
milling process and correlate the chemical concentration
with the APPR, we used a scanning Auger microscope.
Since the amorphization of Ni-Zr bilayer by a solid-state
reaction has shown that the Ni is the only moving
species, we have measured the Ni content of the Zr
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FIG. 2. Normalized fraction of amorphous phase (solid
line) as a function of the milling time calculated from the
differential scanning calorimeter crystallization peak. The
dashed line shows the derivative of the full line and represents
the amorphous-phase production rate.
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Figure 3 shows the concentration of Ni and Zr in

selected Zr particles as a function of depth for various
milling time. The 0.25- and 0.5-h traces show some Ni-
Zr interfaces. During the first 3 h we observe large fluc-
tuations in the local concentration. After 8 h, when the
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(a), (b) X-ray diffraction patterns (Mo itg radja
tion) of a mixture of Ni and Zr powders (average composition
NiZr2) for milling times of 0, 0.5, 1, 2, 3, 4, 6, and 8 h.
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crystallites as a function of the milling time. The size of
the electron beam of the microscope was chosen to be
smaller or on the order of the crystallites dimension
whenever possible (the minimum beam size achievable
on a PHI 660 is 250 A). The chemical composition of
Zr crystallites was measured as a function of depth using
a sputter gun operating at 3 kV and 25 mA with argon
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FIG. 3. Auger depth profiles on Zr-rich crystallites showing
the concentration of Zr and Ni as a function of the sputter
time after various milling time (sputter etch rate, 400 Ajmin
on Ta205).
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