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Random Walk and the Ideal Chain Problem on Self-Similar Structures
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Random walks and ideal chains (equally weighted trajectories) on self-similar structures are shown to
have, in specific examples, drastically diAerent asymptotic behaviors. In certain instances localization
elfects let the end-to-end distance of an ideal chain of length n grow like exp[a(logn) ~] (p (1) or
(logn)" for large n Th. e renormalization-group analysis and the fixed point, giving these behaviors, are
of a new type. These results could be of experimental relevance for the migration properties of excita-
tions on fractal structures in the presence of a trapping environment.

PACS numbers: 64.60.Ak, 05.40.+j, 05.50.+q

Random walks (RW) on self-similar structures are
well known and have been studied extensively' both be-
cause their properties are related to transport phenome-
na and because they are directly connected with linear
dynamics on the same structures. This problem is
defined by a master equation governing its time evolu-
tion. On a lattice S, where the concept of neighborhood
has been introduced among sites, the probability P„~(n)
to be at site x after an n-step walk, starting at xo,
satisfies the following equation:

P„,(n+1) =P„„(n)+g[w,JP,~(n) —
w~ P„~(n)],

where w y is the probability to jump from the site y to
the site X. We shall consider the case where w y is
different from zero only when x and y are nearest neigh-
bors and is independent of x. Two simple choices have
been considered in the literature: w,r =w/z~, where z~ is

the number of nearest neighbors of y, and w„y=w, corre-
sponding to the myopic and blind ant problems, ' re-
spectively. Following the suggest&on coming from nu-

merical simulation it has been rigorously proved that
asymptotically these two problems define the same ex-
ponents governing the long-time behavior of the end-to-
end distance. In the case of the myopic ant performing
an n-step random walk 8'which visits sequentially sites
with coordination zo, zi, . . . ,z„,one easily sees that the
associated statistical weight is Q;z;

The ideal chain (IC) problem is defined on the same
ensemble of walks of the previous problem. However,
now the statistical weight of a walk depends only on its
length and not on the type of sites it visits. In other
words, the IC problem is the equilibrium statistical prob-
lem of an ideal polymer in solution.

Clearly for structures where the coordination zx is in-

dependent of x, like regular lattices, the two problems
are equivalent. Probably due to this equivalence it has
been implicitly assumed that for self-similar structures
some type of relation (like the one between the myopic
and the blind ant) continues to hold and no surprise
should be present.

If the structure S is embedded on a regular lattice
with coordination z (e.g. , an incipient infinite cluster in a
percolation model on a d-dimensional hypercubic lat-
tice), one can also define another type of random walk
with trapping environment (RWTE): The ant moves

randomly among all its nearest-neighbor sites and it dies
if it jumps on a site not belonging to S. This type of
walk could be of experimental interest, for example, in

the migration properties of excitations in mixed organic
crystals. The environment acts on the excitations like a
fast decay channel. It is not difficult, however, to see
that the RWTE is equivalent to the IC if the average in

the former is restricted only to the surviving ants.
In Ref. 7 some types of fractal lattices have already

been studied and indeed different asymptotic behaviors
have been predicted for the RW and the RWTE as well

as for the IC due to the above remark. However, since
there are no substantial differences among the fractal
structures studied in Ref. 7 none of the localization
effects we are going to present has been found.

Both the RW and IC problems can be studied simul-

taneously in a unique "phase diagram" using a Gaussian
field theory with Hamiltonian

e([a,})= —,
' ga, v

2 —g v, vy=-,' gv, ~,yyy, (2)
x (xy) x y

where the second summation is over nearest-neighbor
sites and a, =z, (1+ra/w), z, (1+co/wz„), and K ' for
the myopic ant, blind ant, and ideal chain problems, re-
spectively. We have introduced m as the discrete La-
place transform parameter of P, (n), i.e., P,~ (ru)
=P„=pP,~(n)(1+ru) " ', and the fugacity K per step
in the ideal chain problem. In this last case the counter-
part of P,~ (ru) is the generating function G„~(K)
=g„=pC~(n)K" of C,~(n), the number of n-step
walks joining xo to x. In any case P ~ and G ~ are pro-
portional to the expectation value (y p ) =M,~' with
respect to the Boltzmann factor exp( —P), where 'P is
defined by Eq. (2) with the above choice of a 's. The
equivalence of random walks and Gaussian models is
well known for regular lattices. ' " Generalization to
fractal lattices is straightforward' and can be used in

many other related contexts. '
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In order to better understand the origin of the locali-
zation properties o ef th IC we begin with the rather sim-
ple examp e o e r1 f th T f actal which is also useful for some
interesting remarks.

nd fFigure 1(a) shows the first two steps, Tt andnd T 0

known'' and consists of eliminating the subset of field
variables p„in T„with Hamiltonian (2) in order to go

rescaling of the system by a factor 2. Since there are
only two types of coordination the RG procedure re-
quires only two parameters Q =

~, 3=Q Q for z„=1,3, re-
spectively, w ic renormh h malize according to the following
recursions:

Q) =Q)Q3 2

a3 =a3 —a3/a~ —3.
(3a)

(3b)

2/d(R'(n))„, n- (4)

The resulting phase diagram is show
'

g.wn in Fi . 2. The
unphysical region is e1

'
the set of initial conditions which

under recursions make Q
~

and&or Q3 gne ative, making the
the matrix(2) unbounded from below (i.e. ,

' energy
m bM,-, , exhi its nega

'~

b
0

tive eigenvalues). The curves m,
and c represent the set of initial conditions for the myo-

1 d t d the ideal chain, respective y. The
curves m and b of the ants intersect the fixed point 8'
—LQ~ —,Q3 — a=(a* = l, a3 =3) as hatt 0 [see the expressions or t e't atQ, 's following q.E . (2)]. This means, as we expect, t at

t t' behavior of the ants is determine y t e
nval-same (unstable) fixed point W. There are two eigenva-

ues, k =6 and 2, of the matrix associated with the linear-
ized recursions (3) around W. The highest one, k =6,
gives the exponen t d =log X governing the behavior o
the mean-square distance of an n-step RW in the large-n
limit; i.e.,

i n
' d =2d/d„=21og3/log6 describing the scaling

on theof the density of states for harmonic oscillations on e
same structure. is resuTh' result can also be obtained from
resistivity argumen s.t If we associate a unit resistance to
each link of the fractal then the resistance between sites

guments pre ictd' t ~ =d —d. For the T fractal it is evi-
dent that /=1 which implies d =logq6. The m curve,

Q Q =3, is invariant under recursions 3) and it isi.e. , Q3 Q~ =
The secondalso the eigendirection associated wit k . e s

e X=2 is associated with the eigendirection
which is tangent to the critical line C joining t e xe
point W to another fixed point C=(a~ =~,a3
=(1+J13)/2) which attracts the whole line C the ex-
istence of this line comes both from numerical evidence
and from perturbative expansion for qthe e uation of this
1' round the fixed points Wand C).ine aro

The asymptotic behavior of the IC is describe yed b the
C th line c of the initial conditions

n 6 a:M„'is finite and becomes singular at K,
t Ct ereisony, .t C t '

onlywhere zero eigenvalues are present. t C t '
on y

one relevant eigenva ue,1 k of the matrix associated with
the linearized recursions, giving t e qt e e uation analogous
to (4) for the mean-square end-to-end distancance of the IC
with d substituted by d, = log2X, . In this case d,
=log2(1+ 413) =2.203. . . which is diAerent from d .

The second relevant eigenvalue k—=2 at 8'describes the
crossover between the asymptotic behaviors of the RW
and IC. The y exponent for the IC problem is e ne

s er latticethrough the average number of n-step chains per
site which should behave asymptotically like K, 'n~

or, which is the same, through the divergence o the
suscepti i ity g o'o t' f the model (2) near K„i.e. , g„,(K)/N —(K, —K) r, where N is the number
of sites of the lattice. If the fractal we are considering is
embedded on a regular structure with coordination z

In this case d„,=log26 =2.585. . . , implying a spectral di-

''- b

(b)
~ ~ ~ ~ ~

(c)
AAxAh,

FIG. 1. Recursive construction of three oe of the fractals con-
d d this paper. Sites with the crossess in (a) are the onessi ere in is

'bed in the text.involved in the decimation procedure described in e

a3
1 2E '3

K,

FIG. 2. Qualitative phase diagram for the RW pW and IC rob-
lem. The curves m, b, and c represent tthe set of initial condi-

d blind ant and the ideal chain, respec-tions for the myopIc an
tively.
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Q2 =Q3Q2(Q2 —2)/2+Q3(1 —Q2) —2Q2+9Q2/2,

Q3 =Q3Q2(Q3Q2 —5)/2+2Q3(1 —Q2)+6Q2,

(sa)

(sb)

the corresponding rescaling factor, I, is some unspecified
parameter (greater than 1 of course). Apart from the
fixed point (Q2, Q3 ) =(2, 3) describing the asymptotic
behavior of the RW, for which d, =2d/d„=log36/log27,
it seems that there is no other fixed point describing the
scaling limit for the IC. [The above value of d, can also
be obtained from the same resistivity arguments as for
the example of Fig. 1(a).]

then the survival probability for the RWTE behaves like
(zK, ) "n' ' for large n . For the RW problem the
counterpart of g is Q„P„whichis equal to ro ' due to
the probability conservation Q,P„,„(n)=1, thus imply-
ing y =1.

In order to calculate y one has to add to the Hamil-
tonian (2) a coupling with an external "magnetic field"
of the type P h„p [see, e.g. , Ref. 11(a)]. The previous
renormalization still applies and it is easy to see that one
needs only two magnetic fields h =h], h3 for z„=1,3,
respectively. The recursion equations are linear in the
fields h's and the highest eigenvalue k~ =2 " gives the y
exponent through the standard relation y= (2y~ —d)/d, .
At the C fixe point we get

y=log[(5+2 413)/31/log(1+~13) =0.919. . . ,

while at 8' we find correctly @=1. Thus the two prob-
lems belong to diff'erent universality classes.

Analogous things occur also for the branching Koch
curve. ' Here we have still two types of coordinations
z =2, 3 and one needs two coupling constants a, =a2, a3
for z„=2,3, respectively. The phase diagram is qualita-
tively the same as the one in Fig. 2 with a] substituted

by Q2. Now we find W=(Q2 =2,Q3 =3), C=(Q2 =
Q3 =J5), K, ' =2.755. . . while the critical exponents
are d =log3 '3 =2.357. . . and y =1 at 8' and d,
=log311 =2. 182. . . and y = log [(47+21&5)/10]/log 1 1

=0.934. . . at C. y and d, /d define two new intrinsic ex-
ponents of the considered fractals in addition to the spec-
tral dimension d, . '

From both previous examples one learns that near the
critical region C the parameter a;, associated with the
lowest coordination, iterates toward infinity after a few
recursions while the other one remains finite. Since from

Eq. (2), the statistical weight for visiting site x is 1/Q,
the leading contribution to 6, comes from ideal chains
that, at a coarse-grained level, try to avoid sites at low

coordination.
The next two examples are such that the sites of

highest coordination do not form an infinite cluster of
nearest-neighbor sites.

The first structure has been introduced to model the
backbone of the incipient infinite cluster in percolation'
and it is shown in Fig. 1(b). With the same notation as
above we find the following recursion equations:

What we really find is that indeed there is no other
physically important fixed points of (5) but there is an
invariant line joining the fixed point (2,3) with "the
point" (~,2) which is the domain of attraction of this
last one. A simple example catching the essential in-
gredients of the recursions (5) is represented by the fol-
lowing two-dimensional map:

X' =XY/(1 —X), Y' = Y (6)
The ordinary fixed points of (6) are (0,0) and (0,1 ).
Furthermore, it is easy to see that the line X(Y)
=[+„=OY '] ' is invariant under the recursion (6),
that it joins the fixed point (0,1) with the point (1,0),
and that it is attracted by this last one. The line invari-
ant under the recursions (5) can be obtained recursively
starting from (oo, 2) and its first terms are'

Q3(Q2) =2+ + —
2
+01 5 1 1

a2 4 a2
(7)

along this line a2 renormalizes like

Q2 2 Q2+ 10 +'0(I/Q2) ~ (8)

The intersection of this line with a2 =a3 =K ' occurs at
K, =2.63522. . . . The phase diagram is similar to the
one of Fig. 2 with a] substituted by a2.

The point (oo, 2) is not an ordinary fixed point since it
is infinitely repulsive and the recursion equations cannot
be linearized around it. In order to derive the scaling of
the average end-to-end distance one has to proceed in the
following way. Since after n iterations of the RG pro-
cedure the length is rescaled by a factor l" Eqs. (5), (7),
and (8) imply that, if we start near Q3 =Q2 =K, ' with
Q 3 Q 3 (Q 2) + 6, the end-to-end distance R (6) behaves
like

R(S)-l"R()" k"cS), (9)

implying an average end-to-end distance for the ensem-
ble of n-step IC of (R(n)) exp[log—l(logn/log —', ) ' ],
i.e., d, =~. The y exponent in this case is 1. Similar re-
sults are obtained also for the Sierpinski gasket based on
a generator of side 3 [see Fig. 1(c)],where again two pa-
rameters a4 and a6 have to be introduced corresponding
to the two types of coordination z =4 and 6, respective-
ly. The fixed point for RW is a4 =4,a6 =6 with d
=log3'& and @=1 in agreement with the result of Ref.
17. For the IC the calculation, straightforward but rath-
er tedious, gives K, ' =4.40241. . . and for large n,

(R(n)) (10gQ) log3/log2

i.e., d, =~ again. One also finds y= 2 . This time the
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where k = 2, while k and c are finite constants depend-
ing on the initial conditions. Equation (9) holds as long
as n is large and the argument on the right-hand side is
equal to some fixed 60&&1. We thus obtain for K K,

R(K, —K) —exp[~ log(K, —K)
~

' logl/(log —', )' ], (10)
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fixed point is such that a6a4 =6+243 and a4 =~.
From the position of the fixed points governing the
asymptotic behavior of the IC in the last two cases we
learn that the cause for the localization effect is just due
to the highest coordination sites that act as "entropic
traps, " preventing the swelling of the ideal chain.

One could ask if similar effects are present whenever
the sites with the highest coordination are not connected
to form an infinite cluster and are uniformly distributed
over the structure. It would be extremely interesting to
know if something analogous also occurs for statistical
fractals like the incipient infinite cluster in percolation.
Of course diffusion is normal on periodic lattices with
nonuniform coordination. The localization found here is
due essentially to the combined effect of self-similarity
and of the nonconstant value of the coordination.

The RWTE can also be generalized to the case where
the ant at site x has a different probability between the
event to remain in the structure, z„jz,and that to go out
and then die, p(z —z )/z with p ~ 1. For p=0 and 1 we

get the blind ant and the IC, respectively. For the cases
studied here one can see that as soon as p &0 the
asymptotic behavior is the one of the IC; i.e., there is
universality with respect to the parameter p.

Other types of surprises, connected with the entropy of
self-avoiding branched polymers on a Sierpinski gasket,
like the one used here, have been found in Ref. 18.

Localization effects on RW, due to external forces
have also been studied in the recent literature. Two im-
portant examples are the one-dimensional RW in a ran-
dom bias field on each site' and the motion of a quan-
tum particle in a hierarchical potential.

It should be mentioned that a RG analysis of the type
employed in the present paper allows one to discuss '

also the localization of RW on fractal lattices with topo-
logical or Euclidean bias as well as diffusion on a chain
with a heirarchical distribution of bias fields. '
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