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Gauge Invariance in Chem-Simons Theory on a Torus
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In Chem-Simons gauge theory on a manifold T x R ' (two-torus &&time) the unitary operators, which
induced large gauge transformations shifting the nonintegrable phases of the two distinct Wilson-line in-
tegrals on the torus by multiples of 2x, do not commute with each other unless the coefticient of the
Chem-Simons term is quantized. In U(1) theory this condition gives the statistics phase 8 =tr/n (n is an
integer). The condition coincides with the one previously derived on a manifold S3 (three-sphere) for
SU(N ~ 3) theory but dilfers by a factor of 2 for SU(2) theory. The requirement of the Z& invariance
in pure SU(N) gauge theory imposes a stronger constraint.

PACS numbers: 11.15.—q, 05.30.—d, 74.65.+n

Res =pe '~TrAx(8, Ap+ —,'igA„Ap) (2)

in non-Abelian gauge theory, where A„=A„'T' and
[T',T ] =if' 'T' with the trace in the fundamental rep-
resentation Tr T'T =

2
8' . It was previously intro-

duced to generate a topological mass of gauge bosons. '

More recently, it has been argued that the addition of
(1) in U(l) theory leads to fractional statistics, and
could be essential to construct an effective theory for
high-T, superconductivity. Also it has been shown that
pure non-Abelian Chem-Simons theory is a powerful
tool in exploring knot theory in mathematics, and pro-
vides a new way of formulating theory of gravity in 2+1
dimensions.

It is known that on a manifold S (a three-sphere) the
coe%cient p in (2) in non-Abelian gauge theory must be
quantized in the unit of g /4tr so that the action may
change only by multiples of 2z under large gauge trans-
formations. We consider a theory on a manifold T
x R ' (two-torus x time) and derive a quantization condi-
tion for p in both Abelian and non-Abelian theories. In
addition to academic curiosity about properties of gauge
theory on multiply connected space, putting a gauge
theory on a torus has the advantage of eliminating the
infrared ambiguity which quite often plagues analysis of
gauge theory in Minkowski spacetime.

In gauge theory on a multiply connected space nonin-
tegrable phases of the Wilson-line integrals along non-
contractable loops become physical degrees of free-
dom. ' Dynamics of such phases lead to rich physical
consequences, '' which, in general, do not disappear
even in the infinite-volume limit. As an example, in
QED on S'xR' (circlextime) the nonintegrable phase
couples through the anomaly to the zero mode of
fermion-antifermion bound states, leading to the 0 vacu-

In 2+1 dimensions one can always add to the La-
grangian the Chem-Simons term

Xcs= 2 pe ~ABvAp

in U(1) gauge theory, or

um. '' In other words the structure of the 0 vacuum is a
direct consequence of the invariance of the theory under
large gauge transformations. It is our hope that the
analysis of Chem-Simons gauge theory on a torus, in its
infinite-volume limit, gives crucial information on frac-
tional statistics and high-T, superconductivity.

We start to analyze a U(1) theory with the Lagrang-
ian

&tot = —
4 tcF,.F"'+&cs+ &mat[&„, lt ], (3)

Pi(x) = —e'" zaxt, /Lt, , (5)

where e~" = —e"' (e' =1). To guarantee @[he(ht(x))]
=@[hi(h2(x))], the constant a must be an integer. It
leads to the flux-quantization condition' N= fdxF|z
= —2tra/e.

The integer a is related, through one of the equations
of motion,

x B,F"'—
2 pe"' F,„=eJ",

to the total charge

2xg= dx J'= —~+= "a.
2

(7)

As we shall see below, 2trp/e must be an integer (=n)
so that Q=q must be a multiple of n (q=an). Gauge

on a torus (0 ~ x~ ~ L~, j=1,2). Since the space is mul-

tiply connected, one has to specify boundary conditions
for the fields A„and y. After translations along noncon-
tractible loops the fields need to return to their original
values up to gauge transformations:

A„[h, (x) ] =A„[x]+—a„P,(x),1

e
(4)

ttr[h, (x) l =e' ' " y[x],

where hl(x) =(t,xi+L~, x2) and h2(x) =(t,x~, xz+L2).
The most general p, which is t independent and linear in

x is given, up to gauge transformations, by
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transformations, which respect (4), are

1 m (x [ m2x2
A„' =A„+—B„A, y'=e' y, A=2' + +A(t, x) .

e 1 2

Here m
~

and m2 are integers, and A(t, x) is a periodic function of x.
First we consider the case x =0, in which there exists no photon degree of freedom. In the divA =0 gauge,

e
Ap =— dy D(x —y) (8~J' —|)2J ' ) (t,y),

p

eL,A, =8, (t)+e' " + dyD(x —y)e'"rlt, J (t,y)—
2pLp p L]L2

UJ=exp 2r/ pJ+eJ 2 gk UJ
e

where V D(x) =6(x) and fdxD(x) =0. 8&'s, the nonin-

tegrable phases of the Wilson-line integrals exp(ie ish. This time
&& fp'dx~ A~), are the only physical gauge-field degrees of
freedom. The residual gauge invariance in the Q =0 sec-
tor, for instance, is given by

(9)

(is)

8&(t)—8&(t)+2trm, , y„, „,(t)—y„,—,„, ,(t), (10)

where m
~

and m2 are integers, and y„, „,(t)'s are Fourier
components of y(t, x).

Substitution of (9) into (3) yields the Lagrangian
=p828~/e + so that p82/e is canonically conju-
gate to 8~. [8~, 8z] =ie /p. Therefore, the unitary opera-
tors, which generate the residual gauge transformations
(m~, m2) =(1,0) and (0,1), are

UJ =exp +z
2 OI, UJ "'.I 27''lp

e

Here UJ "s induce the shift in the matter fields. U] and

U2 commute with the Hamiltonian. However, since
U~U2 =exp( 4tr ip/e —)U2U~, they commute with each
other and states can be gauge invariant only if

e
p = n (n is an integer) . (i2)

2R

It is known' that in the presence of the Chem-Simons
term the interchange (tr rotation) of two identical parti-
cles gives Schrodinger wave functions an extra phase fac-
tor e', where O=e /2p. Therefore, O, t.„t=tr/n. A simi-
lar quantization condition has been previously derived'
from the requirement of the gauge invariance in the
presence of magnetic monopoles in R . Also it has been
recently shown' that the modular invariance in (8~, 82)
space is achieved only for an even integer n in (12).

The presence of the F term in (3) does not affect the
result. The relevant part of the Lagrangian is

The commutativity of U] and U2 leads to the same
quantization condition (12). In view of (14), (1S)
reduces to (11) in the v=0 limit.

In SU(N) gauge theory we focus on a particular
boundary condition A„[h~.(x)] =A„[x]. More general
boundary conditions have been analyzed in Ref. 10.
Then our boundary condition is invariant under gauge
transformations A„QA„A —(i/g) 0 tl„A t, provided
that n[h~. (x)] =0[x], or, in pure gauge-field theory,
0 [h, (x)]0[x] is an element of the center of SU(N).

Let us consider pure SU(N) Chem-Simons theory:
One of the equations gives a constraint F

~ q

=0. Given an arbitrary single-valued A~ in this sub-
space, the gauge transformation,

n (x) ' = W(x)exp[igx )B(t,x2)],
tt X

1

W(x) =P exp —ig J dy~ A ~(t,y ~, xq)

exp[ —igL )B(t,x2)] =W(t, L ),x2),

which satisfies 0 [h~(x)] = tl [x], brings A ~(x) to
B(t,x2), which in turn is diagonalized by a second x~-
independent gauge transformation. Then the constraint
F )2 =0 implies that 4 ~ is x2 independent and A2 also is
diagonal and x~ independent. A third gauge transforma-
tion with diagonal ti =Q(t, xq) can eliminate the x2
dependence of A2. Therefore, one can take without loss
of generality,

'8, i(t)
gLJAJ = (16)

8] + 82 +
2 (828/ 8/82)+ . (13)

2e L~ L2 2e

Conjugate momenta to OJ's are

~LIL2 . .~. p
2 2 OJ+'

e LJ 2e
(i4)

They satisfy [O~,pj, ] =ill, . All other commutators van-

8,~(t),
where g, =

~ 8~, (t) =0. A p is a dependent variable.
Indeed, parts of the equations Fp~ =0 with (16) imply
that Ao also is diagonal and depends only on t. A fourth
gauge transformation with diagonal ti =0(t) then can
gauge away Ap entirely (Ap =0).

There are two kinds of residual gauge invariances.
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One is

Qb BQb exp 2+i
m 1 X1 m2QX2+

L1 L2
8j Q

~ 8j Q +2&mj Q ~ (i7)

where m~, s are integers satisfying p, =lmj, =0. The other is the Zlv transformation for which m~, =(I NS—,b)l~/N
[a,b =1-N, l~ =1—(N —1)]:

8q, ~ Oj, +2nlq ——B,b
1

This is a special symmetry in pure gauge-field theory.
Substitution of (16) and Ao =0 into Xcs yields, in terms of 0~, [a = I-(N —1)],

2 02aOla +X 02a Xf Olbg, Q Q b

where g,' =g, = l'. Therefore, p~., = e~"(2p/g ) (Ok, +g/, Okb ) satisfies

[Oja~Pkb] i~jk ~ah~ [Olai 02b] l ~ab ~ ~P 1a~P2b] l
2 (~ah + I ) ~

p g
with all other commutators vanishing.

The unitary operators U~, =exp(22rip~, ) [a =1-(N They satisfy [O~„pkb] =ib~k B,b All ot. her commutators
—1)],which generate (17), satisfy vanish. The unitary operators generating (17) are

U[,U2b =exp 8x tp (B,b+ 1) U2bUl, , (20)
I

U,, =exp 2~l p,,+e"
2 Oka+g O, bg, b

The commutativity of these operators leads to the same
results as (20) and (21).

When p obeys the quantization condition (12) or (21),
it is meaningful to consider states which are gauge in-
variant up to a phase. In U(1) theory,

so that the commutativity of Uj, 's leads to

(g /8')n, for SU(2),
(g /4')n, for SU(N ~ 3), (2i)

where n is an integer. The condition (21) is the same as
the one derived on a manifold 5 in Ref. 2 for SU(N
~ 3), but is weaker than that by a factor of 2 for
SU(2). It is to be seen how the additional factor of 2

constraint arises in SU(2) theory on a torus. ' '
Equation (18) is generated by combinations of U~

=exp[(2+i/N) P,'pj, ] and U~, . The requirement of the
commutativity of these unitary operators leads to a
stronger constraint:

N
p = n (n is an integer) . (22)

4z

i a&
Uj+ala2 =e '+aia2. (23)

In the Q=O sector of nonrelativistic theory +=Vs,„s,
lgl ~0)F. For x =0, Ol and 02 are canonically conjugate
to each other, and the wave function of the state +g,„g, is

u(0l) =&0,
~ es,. „s,),

For p =e n/2n, wave functions satisfying (23) are given
byIn other words, if p satisfies (21) but not (22), then the

Z~ symmetry is spontaneously broken.
In the presence of the F term one cannot simultane-

ously diagonalize A1 and A2 in general. If one freezes
all gauge-field degrees of freedom but the noninte-
grable phases of the Wilson-line integrals, then one finds
that conjugate momenta to 0~, (a=i, . . . , N —I) are

u ...(Ol) =e"' '
C$2 Ol+ —(a2+2itl)

n
(24)

pjQ
=

where l =O, l, . . . , n —1 and 62 (0) is a periodic 8 func-
tion with a period 2x. It is easy to check that U(02)
takes the same form as u (Ol ).

In the Q= 1 sector of nonrelativistic theory (with neu-

L~ g2 . b, g, b, tralizing uniform background charge Qbs= —1) states
satisfying (23) are

~
+) =„dOl g e"' ' ' ' ' ' h(0l —2xml)

~
Ol)

~ ml, m2),
ml, m2

where
~ ml, m2) =lif„,

, „,, ~0)F. h(0) is an arbitrary function, and should be determined so as to solve the Schrodinger
equation.
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ln SU(2) theory with p =g n/8rr the structure of the commutation relations and the unitary operators are the same
as in U(l) theory so that wave functions are given by (24) with the substitution 8~ O~tt aj~ a~~. In SU(3) theory
with p =g n/4rr, states satisfying U/, ~

q') =e"'
~
+) (a =1,2) are

3ll

where r =0, 1, . . . , 3n —I and q =0, 1, . . . , n —l. There
are 3n states with given a~, 's.

In this paper we have explored implications of the
gauge invariance in Chem-Simons theory on a torus.
The requirement of the gauge invariance has led to the
quantization condition for the coefficient of the Chern-
Simons term.

It is an interesting fact that the quantization condition
follows even in U(l) theory, the case probably most im-

portant in physical applications. It is, however, a
dynamical question whether or not the gauge invariance
remains unbroken in the ground state. Moreover, one
might wonder how the quantization condition derived on
a torus has any relevance in physics in the Minkowski
spacetime. It is quite likely that something very special
happens in the Minkowski spacetime when the quantiza-
tion condition is satisfied. ' The experience in the
analysis of QED on a circle'' also suggests that as a
consequence of the gauge invariance the wave function
of the ground state with matter has the 0-vacuum struc-
ture, which should remain intact in the infinite-volume
limit. If this is the case, the notion of the gauge invari-
ance has to play an important role in discussing fraction-
al statistics and high-T, superconductivity.
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