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In Chern-Simons gauge theory on a manifold T?XR' (two-torus Xtime) the unitary operators, which
induced large gauge transformations shifting the nonintegrable phases of the two distinct Wilson-line in-
tegrals on the torus by multiples of 2z, do not commute with each other unless the coefficient of the
Chern-Simons term is quantized. In U(1) theory this condition gives the statistics phase 8 =x/n (n is an
integer). The condition coincides with the one previously derived on a manifold S3 (three-sphere) for
SU(N = 3) theory but differs by a factor of 2 for SU(2) theory. The requirement of the Zy invariance
in pure SU(N) gauge theory imposes a stronger constraint.

PACS numbers: 11.15.—q, 05.30.—d, 74.65.+n

In 2+1 dimensions one can always add to the La-
grangian the Chern-Simons term

Lis=7ue*”4,9,4, (1)
in U(1) gauge theory, or
Lés=pe*?TrA,(8,4,+ % igA.A,) )

in non-Abelian gauge theory, where A4,=A4;T° and
[72,T?] =if°*T¢ with the trace in the fundamental rep-
resentation Tr7°T?=+8%. It was previously intro-
duced to generate a topological mass of gauge bosons.'™
More recently, it has been argued that the addition of
(1) in UQ1) theory leads to fractional statistics,” and
could be essential to construct an effective theory for
high-T. superconductivity.® Also it has been shown that
pure non-Abelian Chern-Simons theory is a powerful
tool in exploring knot theory in mathematics,” and pro-
vides a new way of formulating theory of gravity in 2+1
dimensions.®

It is known that on a manifold S (a three-sphere) the
coefficient u in (2) in non-Abelian gauge theory must be
quantized in the unit of g2/4x so that the action may
change only by multiples of 27 under large gauge trans-
formations.? We consider a theory on a manifold T2
xR (two-torusxtime) and derive a quantization condi-
tion for u in both Abelian and non-Abelian theories. In
addition to academic curiosity about properties of gauge
theory on multiply connected space, putting a gauge
theory on a torus has the advantage of eliminating the
infrared ambiguity which quite often plagues analysis of
gauge theory in Minkowski spacetime.

In gauge theory on a multiply connected space nonin-
tegrable phases of the Wilson-line integrals along non-
contractable loops become physical degrees of free-
dom.®'® Dynamics of such phases lead to rich physical
consequences,g'” which, in general, do not disappear
even in the infinite-volume limit. As an example, in
QED on S'xR' (circlextime) the nonintegrable phase
couples through the anomaly to the zero mode of
fermion-antifermion bound states, leading to the 6 vacu-
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um.!" In other words the structure of the 6 vacuum is a

direct consequence of the invariance of the theory under
large gauge transformations. It is our hope that the
analysis of Chern-Simons gauge theory on a torus, in its
infinite-volume limit, gives crucial information on frac-
tional statistics and high-7, superconductivity.
We start to analyze a U(1) theory with the Lagrang-
ian
—£10l= - i—KFyVF”V+L(l:S+=£mal[Ap,W] ’ (3)
on a torus (0=<x; <L;, j=1,2). Since the space is mul-
tiply connected, one has to specify boundary conditions
for the fields 4, and y. After translations along noncon-

tractible loops the fields need to return to their original
values up to gauge transformations:

Aulh; (001 =4, [x] +%8“ﬂj(x) ,
)
wlh, ()1 = ylx],
where h;(x) =(z,x,+Ly,x2) and hy(x) =(t,x,,x2+L>).

The most general ; which is ¢ independent and linear in
x is given, up to gauge transformations, by

B;(x)=—e*raxi /Ly , 5)

where e/ =—¢*/ (¢'?=1). To guarantee ylh,(h,(x))]
=wlh,(h,(x))], the constant @ must be an integer. It
leads to the flux-quantization condition'? ®=fdxFi,
= —2rale.

The integer a is related, through one of the equations
of motion,

k&, F* — ¥ ue*F,, =eJ* 6)

to the total charge

Q=fde°=—f;—q>=2—e”f—a. Q)

As we shall see below, 2zu/e? must be an integer (=n)
so that Q=g must be a multiple of n (g=an). Gauge
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transformations, which respect (4), are

mx mjx;
__.__+__.__

1 .
A=A+ 3, v =ety, A=2
H M eal‘ 14 ey T Ll [‘2

+A(,x). (8)

Here m | and m are integers, and A,x) is a periodic function of x.
First we consider the case k=0, in which there exists no photon degree of freedom.* In the divA =0 gauge,

A0=£fdyD(x—y)(6|JZ—azJ')(tsy) )
u

e’gx e’L; .
eL;A; =9j(t)+E”‘—2—5L—kk+—uLfdyD(x—y)e”‘ R
where V2D (x) =8(x) and [dxD(x) =0. 6,’s, the nonin-
tegrable phases of the Wilson-line integrals exp(ie
Xfé’dxj A;), are the only physical gauge-field degrees of
freedom. The residual gauge invariance in the Q =0 sec-
tor, for instance, is given by

Gj(t)—> 0]([)"‘27["’1]', Wnl"'z(t)_. vlnl_ml‘”Z_'nZ(t) ,(10)

where m| and m; are integers, and y,, »,(1)’s are Fourier
components of y(z,x).

Substitution of (9) into (3) yields the Lagrangian
=.60,60,/e2+ - - - so that uB,/e’ is canonically conju-
gate to 0,: [6,,0,] =ie?/u. Therefore, the unitary opera-
tors, which generate the residual gauge transformations
(m,,m,)=(1,0) and (0,1), are
27i

‘uek

Jjk
+e€ 5
e

U; =exp upm. an

Here U/™"s induce the shift in the matter fields. U, and
U, commute with the Hamiltonian. However, since
U,U,=exp(—4r’iu/e?)U,U,, they commute with each
other and states can be gauge invariant only if
2
u =§—n (n is an integer) . (12)
T

It is known'? that in the presence of the Chern-Simons
term the interchange (x rotation) of two identical parti-
cles gives Schrodinger wave functions an extra phase fac-
tor e’®, where 0 =e?/2u. Therefore, Oy =n/n. A simi-
lar quantization condition has been previously derived'4
from the requirement of the gauge invariance in the
presence of magnetic monopoles in R3. Also it has been
recently shown ' that the modular invariance in (8,,6,)
space is achieved only for an even integer n in (12).

The presence of the F2 term in (3) does not affect the
result. The relevant part of the Lagrangian is

L, L,

Logoy Lig
L, 'L, ?

K
>
2e”

+E£:7(9291—9192)+"' . (3)

Conjugate momenta to 6;’s are
_ KL1L2

272
eLj

P 6,+e*L=0; . (14)
e

2

They satisfy [6;,px] =i5;x. All other commutators van-
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)
0(; —_ 9 ,
JO,y) L.L,
ish. This time
U;=exp |2ni pj+ej"—2‘u—29k”Ujm‘“. (15)
e

The commutativity of U, and U, leads to the same
quantization condition (12). In view of (14), (15)
reduces to (11) in the x =0 limit.

In SU(N) gauge theory we focus on a particular
boundary condition A,[h;(x)1=A,[x]. More general
boundary conditions have been analyzed in Ref. 10.
Then our boundary condition is invariant under gauge
transformations 4,— QA4,0%—(i/g)ad,a’, provided
that @la;(x)1=alx], or, in pure gauge-field theory,
alh;(x)1alx]"is an element of the center of SU(N).

Let us consider pure SU(V) Chern-Simons theory:
Lo =.LE&s. One of the equations gives a constraint F,
=(0. Given an arbitrary single-valued A4; in this sub-
space, the gauge transformation,

a(x) " =w(x)expligxB(1,x2)1,

W(x) =chp[—igﬁ)XIdy,Al(t,yl,xz)] ,

expl—igL \B(t,x,)1=W(,L\,x2),

which satisfies Qlh;(x)I=0lx], brings A4,(x) to
B(t,x;), which in turn is diagonalized by a second x;-
independent gauge transformation. Then the constraint
F,,=0 implies that 4, is x, independent and A4, also is
diagonal and x, independent. A third gauge transforma-
tion with diagonal Q@ =0(¢,x;) can eliminate the x,
dependence of 4,. Therefore, one can take without loss
of generality,

9j|(t)
gL;A;= : (16)
O;n (1)

where X=16,,(t)=0. Ao is a dependent variable.
Indeed, parts of the equations Fo; =0 with (16) imply
that Ay also is diagonal and depends only on ¢. A fourth
gauge transformation with diagonal @ =Q(¢) then can
gauge away Ao entirely (4¢=0).

There are two kinds of residual gauge invariances.
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One is

MigX| + maX?
L, L,

Qap =0ap EXP [Zm’ [

B eja_’ eja+27zmja )

amn

where mj,’s are integers satisfying >N, mj, =0. The other is the Zy transformation for which mj, =(1 —NS,,,,)I,-/N

la,b=1-N,l;=1-(N—1)]
1
0i1n— Oia = =6 .
] 0; +27rlj[N 5[,]

This is a special symmetry in pure gauge-field theory.

18)

Substitution of (16) and 49 =0 into .Ls yields, in terms of 8, [a=1-(N—1)],

2 ' . ] ' .
L==£ [): 020010+ X 0202 eu,] ,
g a a b

where X, =X N=\'. Therefore, p;, =€*(2u/g?) (6 +X46ks) satisfies

2
. . 1
[6ja,pk6) =ik 8ap, 1[614,62] =l'§: [5ab N
with all other commutators vanishing.
The unitary operators Uj, =exp(2zip;,) la=1-(N
— 1)1, which generate (17), satisfy

2.
UaUs =exp | = 32 H (5,,+1) [UnpUra,  (20)
so that the commutativity of Uj,’s leads to
(g2/8m)n, for SU(2), oD
K= (g¥/4n)n, for SUN=3),

where n is an integer. The condition (21) is the same as
the one derived on a manifold S* in Ref. 2 for SUV
= 3), but is weaker than that by a factor of 2 for
SU(2). It is to be seen how the additional factor of 2
constraint arises in SU(2) theory on a torus.'>'¢

Equation (18) is generated by combinations of U;
=expl(27i/N) X pja] and Uj,. The requirement of the
commutativity of these unitary operators leads to a
stronger constraint:

2
u =LV_g”_n (n is an integer) . (22)

4

In other words, if u satisfies (21) but not (22), then the
Zy symmetry is spontaneously broken.

In the presence of the F? term one cannot simultane-
ously diagonalize 4, and 4> in general. If one freezes
all gauge-field degrees of freedom but the noninte-
grable phases of the Wilson-line integrals, then one finds
that conjugate momenta to 6, (@a=1,...,N—1) are

L\L . ' ) ,
_LiL: 2« [()ja+§ Gjb] +e!kig&2 [Oka"'; Okb] .

pi
ja L? g°

. [Praspas] =t—§-%<aab+1>,

(19)

They satisfy [8/4,pks] =i6jx8a5. All other commutators
vanish. The unitary operators generating (17) are

Uja =exp{27ri p,-a+efkﬁ [ek,,+zb‘,' ok,,] ] }

The commutativity of these operators leads to the same
results as (20) and (21).

When u obeys the quantization condition (12) or (21),
it is meaningful to consider states which are gauge in-

variant up to a phase. In U(1) theory,
Ui¥aya,=€ ¥ a0, . (23)

In the Q=0 sector of nonrelativistic theory ¥ =¥,
® |0)r. For k=0, 6, and 6, are canonically conjugate
to each other, and the wave function of the state ¥, is

u(9|) =(6, | Wgauge> s
+ oo .
v(6,) =(0; | ¥gauge) ={'—;—f_w deye "%y (g,)

For u =e’n/2n, wave functions satisfying (23) are given
by

ualaz(el ) =ei“19|/2”62” (24)

91+%(a2+2n1)] R

where /=0,1,...,n—1 and §,,(8) is a periodic § func-
tion with a period 27. It is easy to check that v(8;)
takes the same form as u(6,).

In the @ =1 sector of nonrelativistic theory (with neu-
tralizing uniform background charge Qu,= —1) states
satisfying (23) are

+oo A .
| w) =f_°° do, Y, elat2ntimmeitady (g —2rm )| 60)® |mi,ma),

my,my

where |m|,m2>=u/:§,,,,,2|0>p. h(8) is an arbitrary function, and should be determined so as to solve the Schrodinger

equation.
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In SU(2) theory with u =g2n/8x the structure of the commutation relations and the unitary operators are the same
as in U(1) theory so that wave functions are given by (24) with the substitution 8,— 6, a;— a;;. In SU(3) theory
with u =g?n/4x, states satisfying Uj, | ¥) =" | ¥) (a=1,2) are

u(9||,9|2)=ei(a”9“+a'28'2)/2”82,, 9||+-31—(2a2|—a22—27tr)—'£§q-]62,,[012+ﬁ(—a21+2a22—2n’r) ,
n

where r=0,1,...,3n—1 and ¢=0,1,...,n—1. There
are 3n? states with given aj,’s.

In this paper we have explored implications of the
gauge invariance in Chern-Simons theory on a torus.
The requirement of the gauge invariance has led to the
quantization condition for the coefficient of the Chern-
Simons term.

It is an interesting fact that the quantization condition
follows even in U(1) theory, the case probably most im-
portant in physical applications. It is, however, a
dynamical question whether or not the gauge invariance
remains unbroken in the ground state. Moreover, one
might wonder how the quantization condition derived on
a torus has any relevance in physics in the Minkowski
spacetime. It is quite likely that something very special
happens in the Minkowski spacetime when the quantiza-
tion condition is satisfied.'” The experience in the
analysis of QED on a circle'' also suggests that as a
consequence of the gauge invariance the wave function
of the ground state with matter has the #-vacuum struc-
ture, which should remain intact in the infinite-volume
limit. If this is the case, the notion of the gauge invari-
ance has to play an important role in discussing fraction-
al statistics and high-T, superconductivity.
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