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Oscillations and Stability of Rapidly Rotating Neutron Stars
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A method is described for obtaining numerical solutions of the pulsation equations of rapidly rotating
inhomogeneous stellar models. This previously intractable problem has been solved by reexpressing the
pulsation equations in terms of a single potential. These equations are solved and the points of the onset
of secular instability to gravitational radiation are found. These results indicate that it is difficult to in-
terpret the 0.5-ms period of SN 1987A cannot be interpreted as the rotation of a neutron star using
current descriptions of neutron-star matter.

PACS numbers: 97.60.Jd, 67.90.+z, 97.60.6b

The task of solving the equations for the normal modes
of rapidly rotating Newtonian stellar models has
remained an outstanding problem in astrophysics. In a
variety of astrophysical contexts a need arises for
knowledge of the Auid motions and pulsation frequencies
associated with these normal models. This need has be-
come especially pressing in light of the recent discovery
of a pulsar with a 0.5-ms period' and two others with
1.6-ms periods. For these objects, in particular, a
knowledge of the frequencies of the normal modes is
insufficient. The eigenfunctions are needed as well in or-
der to determine the influence of gravitational radiation
(GR) and viscosity on the evolution and stability of the
star, and in order to determine the extent to which the
pulsations can interact with an accretion disk. While in
the case of rapidly rotating uniform-density stellar mod-
els the pulsation equations can be solved analytically, in

general the problem must be attacked numerically in

realistic inhomogeneous stellar models. The equations
have never been solved directly except in the special case
of axisymmetric pulsations. We solve this problem in

general by transforming the equations into a form involv-

ing a single potential BU instead of the Lagrangian dis-
placement vector. In this form the pulsation equations
are easier to solve numerically. Our purpose here is to
outline this method and to present numerical solutions
that are relevant descriptions of the oscillations and sta-
bility of millisecond pulsars.

We define the potential bU =bp/p —bp in terms of the
(Eulerian) perturbations in the pressure bp, gravitational
potential Bp, and the density of the equilibrium star p.
We assume that all perturbation quantities (in particular
bU) have the following form: bU=bU(r, O)e
where r, O, and p are spherical coordinates, t is time, co is
a constant, and m is an integer. Euler's equation for
small perturbations about a stationary axisymmetric star
can be written in terms of this potential BU as

bv'=Q' VbbU,

where 6 is the gravitation constant. These equations for
6U and 8p constitute a fourth-order eigenvalue problem
(where the frequency co plays the role of the eigenvalue)
when supplemented with appropriate boundary condi-
tions. The boundary condition on bp ensures that the
mass of the star remains unchanged, while the boundary
condition on BU ensures that the pressure at the per-
turbed surface of the star remains zero. These condi-
tions can be expressed in the following forms:

lim r By=0, (4)

i(co —mQ)(bU+by) —Q' VbbUV, (y+ —,
' Q co ) =0,

(5)
where p is the gravitational potential of the background
star. Equation (5) is to be imposed at the surface of the
star. We point out that Eqs. (2) and (3) can be reduced
to a single fourth-order equation for BU by solving Eq.
(2) for bw and inserting the result into Eq. (3). We rep-
resent the resulting equation symbolically as

Z„(bU) =0, (6)

where L is a fourth-order differential operator depend-
ing on co. When bU has the form b'U(r, O)e '"'+' ~, Eq.
(6) is a real equation for bU(r, O). We solve this equa-

where Bv' is the perturbed fluid velocity, Vb is the Eu-
clidean covariant derivative (i.e., partial derivatives in
Cartesian coordinates), and g' (with V, g'b=0) de-
pends only on the frequency co and the constant angular
velocity Q [in particular Q,b =i(co —m Q)g, b

—2Vbv„
where g,b is the Euclidean metric, v, =co QV, Q is the
velocity of the star, and co=rsinOl. Using Eq. (1) to
eliminate Bv' from the remaining equations, the conser-
vation of mass and the perturbed gravitational potential
equation reduce therefore to the following:

V, (pg'"VbbU) —i (co —m Q)p (dp/dp)(hU+bp) =0, (2)

V'Vbby+4ttGp(dp/dp)(bU+bp) =0,
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FIG. 1. The angular-velocity dependence of the frequencies
of the I=m modes as encoded in the functions a . The angu-
lar velocities are expressed in units of (rrGpo) 't, where po is the
average density of the nonrotating star of the same mass.

tion by approximating it as a system of linear algebraic
equations on a discreet two-dimensional grid of points.
The resulting algebraic eigenvalue problem is solved us-

ing standard techniques.
We present here the numerical solutions of Eqs. (2)

and (3) for the modes which are the rotating analogs of
the l=m f modes of nonrotating stars. These modes are
of particular interest in the study of rapidly rotating
stars such as the millisecond pulsars because they are the
modes driven unstable by GR. ' The equilibrium stars
used in this analysis are based on an equation of state of
the form p =Kp . This equation of state was chosen to
have compressibility characteristics similar to realistic
neutron-star matter. Figure 1 presents the angular-
velocity dependence of the frequencies of these modes for
2 ~ l =m ~ 7 in the form of the dimensionless function
anI:

ro (n) —mn
ro (0)

These functions, a, are independent of the constant K
that appears in the equation of state and they are in-
dependent of the mass of the star. Dots have been
placed on the curves at the angular velocities where the
frequency of that mode goes through zero. This is the
point at which this mode would become unstable to the
emission of GR if viscosity were not present. Figure 2
depicts a typical example of the eigenfunction SU(r, o)
for these modes.

One of the motivations for solving the equations for
the frequencies and the eigenfunctions of these modes is
to allow us to evaluate the effects of GR and viscosity on
the oscillations. While GR tends to make these modes
unstable in rapidly rotating stars, viscosity tends to
damp the modes. ' The delicate balancing of these two
opposing inAuences will determine whether a given rap-

idly rotating star is stable. The simplest method for
determining the effects of these dissipative effects is to
evaluate the rate at which energy is dissipated from the
modes. Consider the following energy function:

E(t) = —,
' (2p8v'Bv,*+BU*8p+SUSp*)d x, (8)

where e represents complex conjugation. Since this en-
ergy is quadratic in the perturbation variables, its time
derivative for a mode (with time dependence e ' ' ' ')
is given by

dE/dt = 2Elr . — (9)

Expressions for the time derivatives of this energy due to
the eA'ects of dissipation are easily computed and can be
used to determine the rate at which the modes are
damped (or amplified) from Eq. (9). For viscous dissi-
pation the imaginary part of the frequency is given by

=—J rIBo'"So,t, d x,E
where rt is the viscosity of the star and

Brr, t,
= —, (V, Bvt, +Vbb'v, —

—, g,bV, Bv')

(IO)

is the shear. '' The effect of GR may similarly be evalu-
ated using the post-Newtonian GR potential: '

1 1
(co —mA) g Ntro ' 'D D*

I =Imin

where

D,', =Jr Sp 'Y„*,'d

4rrG(l + I ) (1+2)
c '+'l(l —I)[(21+I)!!]'N)=

(12)

EQUATOR

FIG. 2. The eigenfunction SU(r, 6) for the i=m=3 mode
of a star rotating with angular velocity tt =0.6(zGpo) 't'. Each
curve in the figure gives the r dependence of 6U(r, g) at one of
the fixed values of 0. The curves end at the surface of this
highly flattened star.
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FIG. 3. The functions y representing the angular-velocity
dependence of the dissipation time scales.

and l;„equals 2 or ! m!, whichever is larger. Whenev-
er the dissipation is small, the eigenfunctions and fre-
quencies of the adiabatic oscillations from Eqs. (2) and
(3) may be used to obtain the lowest-order expressions
for the integrals in Eqs. (8), (10), and (12). Both of the
time scales, i,, and r~, depend on l and m and the angu-
lar velocity of the star. The imaginary part of the fre-
quency of the mode is the sum of the contributions of
these individual effects: I/z =1/r, , +1/rg. Note that ig
changes sign whenever the frequency m goes through
zero; this triggers an instability if r, , is too large.

We have evaluated the effects of viscosity and GR on
the imaginary part of the frequencies of the modes of
rapidly rotating stellar models using the methods de-
scribed above. In these computations we use the viscosi-

ty for neutron-star matter above the superfluid transition
temperature (i.e., T greater than about 10 K) given ap-
proximately by the formula '

9/4

g =347
T2 ' (14)

FIG. 4. The temperature dependence of the ratio of the crit-
ical angular velocity to the maximum angular velocity of a
neutron star.

in cgs units. It is also convenient to define dimensionless
functions that determine the angular-velocity depen-
dence of the dissipative time scales. We set

to (n) rg (n) r, (0),
to (0) tg (0) r, , (n) . (1S)

Figure 3 depicts the functions y (n) for the l=m
modes. These functions are independent of the constant
K in the equation of state, the mass of the star, and the
temperature used in the viscosity equation.

To determine when a particular mode becomes unsta-
ble to the influence of GR, it is necessary to determine
the angular velocity 0 at which the imaginary part of
the frequency for that mode passes through zero:
0=1/r (n ). When this condition is expressed in

terms of the functions defined above, we find the follow-
ing equation for the critical angular velocities:

co (0)
~ i/(2

~
m

~
+ 1 )-

a(n )+y(n )
0

This equation depends on the easily computed frequen-
cies of nonrotating stellar models [to (0), r~ (0), and
r, , „,(0)] and the functions a (n) and y (n) depicted
in Figs. 1 and 3. We have solved this equation for two
sets of frequencies for nonrotating neutron stars and for
a range of neutron-star temperatures. In Fig. 4 we de-
pict the smallest critical angular velocity for these modes
as a function of temperature. The two sets of frequen-
cies used in these computations are (1) frequencies for a
1.65Mo stellar model based on the Newtonian equations
described in this paper, and (2) frequencies based on ful-

ly relativistic calculations' for the maximum (nonrotat-

! ing) mass neutron star based on the equation of state of
Arponen' which admits nonrotating stellar models hav-
ing masses as large as the binary pulsar PSR
1913+16,' and which admits rotating stellar models
having periods as short as 0.5 ms. ' The angular veloci-
ties are given in terms of 0,. „, the maximum angular
velocity for an equilibrium (but unstable) star of the
same mass. The slopes of these curves have discontinui-
ties where the mode responsible for the instability
changes. At the temperature 10 K the mode responsi-
ble for determining the critical angular velocity is
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I=m=5 for the computations based on the Newtonian
frequencies and l =m =4 for the relativistic frequencies.

The initial temperature of a neutron star is expected to
be about 10' K after the initial burst of neutrino emis-
sion, cooling to about 10 K after two years. ' Figure 4
indicates that in its hot initial state the neutron star will
be unstable if 0 ~ (0.86-0.91)0 .,„. The growth time
for the instability in stars rotating more rapidly than this
value depends on the amount by which 0 exceeds 0
This growth time is less than 10 s for 0 ~ (0.90
-0.94)Q .„„. For the current temperature of 10 K the
neutron star will be unstable if 0 ~ (0.92-0.94)A
and the growth time for the instability will be short com-
pared to 10' s (the observed lower limit' on P/P for the
pulsar in SN 1987A) if t1 exceeds the critical value by a
fraction of a percent. Thus if the 0.508-ms pulsation in
SN 1987A is determined to be due to the rotation of a
neutron star, there must exist (unstable) equilibrium
neutron stars having rotation periods in the range
0.46-0.48 ms. Studies of the structure of rapidly rotat-
ing neutron stars' have determined that none of the
standard equations of state permit equilibrium models
with rotation periods this short if they also permit nonro-
tating models with masses as large as 1.44Mo (as need-
ed to describe the binary pulsar' ). The viscosity of
neutron-star matter must be significantly larger than
that predicted by Eq. (14) or the equation of state must
include nonstandard effects (e.g. , pion condensation) if
there exist neutron stars with 0.5-ms rotation periods.
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