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Quantum Level Statistics of Pseudointegrable Billiards
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We study the spectral statistics of systems of two-dimensional pseudointegrable billiards. These sys-
tems are classically nonergodic, but nonseparable. It is found that such systems possess quantum spectra
which are closely simulated by the Gaussian orthogonal ensemble. We discuss the implications of these
results on the conjectured relation between classical chaos and quantum level statistics. We emphasize
the importance of the semiclassical nature of any such relation.
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The statistical study of quantum level spectra has at-
tracted much attention in recent years in conjunction
with the speculation that it may reflect the degree of or-
der in the corresponding classical system. Based on the
study of simple low-dimensional systems, ' it has been
conjectured that the quantum level statistics of classical-
ly orderly systems show the characteristics of an un-
correlated random distribution (Poisson distribution)
while the quantum spectra of classically chaotic systems
are characterized by a Gaussian orthogonal ensemble
(GOE). Using a model Hamiltonian which has both
chaotic and nonchaotic orbits, Seligman, Verbaarschot,
and Zirnbauer showed that there is continuous transi-
tion between these two extremes, and suggested that
properties of the level statistics are universal in the sense
that some parameter which characterizes the degree of
order in the classical system (e.g. , the Kolmogorov entro-

py) also determines the statistical characteristics of the
quantum spectral distribution.

It is well known that certain integrable systems do not
have Poisson statistics, ' defying the universal associa-
tion of the two. It is also known that systems can be
found which are classically chaotic but which have many
diferent types of non-GOE quantum level statistics; the
pseudospherical billiards of Refs. 10-12 represent sam-
ples of such systems. It is interesting to see whether
there exist systems which violate the supposed connec-

tion between GOE statistics and classical chaos in the
opposite manner, i.e., systems which have GOE level
statistics but which correspond to classically nonchaotic
physics. A particularly interesting billiard problem is
the one studied by Richens and Berry. ' The classical
system has zero Kolmogorov entropy, but the quantum
spectra show a non-Poisson distribution with level repul-
sion. The system has a property which is named pseudo-
integrability —the existence of two separately conserved
energies despite the nonseparable nature of the system.
This is possible because of the singular nature of billiard
potentials, namely, the sharp edge and the infinite height
of walls. The existence of the two conserved quantities
implies that the system cannot be ergodic in phase space
and the flat and rectangular nature of the walls implies a
zero Liapunov exponent for all orbits.

In this Letter, we perform a numerical study of a set
of generalized Richens-Berry billiards. Our model con-
sists of a square billiard with a number of rectangular
pieces, which we refer to as boxes, removed from a
corner. This system is also pseudointegrable. We found
that the spectral distribution is already close to that of
the GOE even in the case of a single box inside the
square well (the example of Ref. 13), and with increas-
ing number of boxes one can make it arbitrarily close to
the GOE. In a sense, it gives a counterexample to the
proposed universality of the level statistics, at least when
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Vo =~ (otherwise),
and the potential of each cell V;~ is given by

V/=0o R(x & —Rand R(y & ~Ri —
1 i j—1

N N N

(3)
V;, =0 (otherwise) .

The summation i,j in Eq. (1) runs for the boxes outside
the boundary. At the large-N limit, our system ap-
proaches the Sinai billiard. ' The N=l case was al-
ready discussed by Richens and Berry' as an example of
a nonergodic system which has level repulsion.

Clearly, the absolute value of two momentum projec-
tions of a particle to x and y axes are separately con-
served, and the system is nonergodic. The Liapunov ex-
ponent A, which is defined as

1 d(r)
lim —ln

) - ~, d(o) ~ 0 r d(0) (4)

the Liapunov exponent and other measures of classical
chaos are defined in a conventional way.

Billiard problems are useful both for the geometrical
intuition and for the computational advantage of a sharp
boundary which provides a natural choice for the basis
wave function. Our model is motivated by an attempt to
approximate the chaotic Sinai billiard' by a pseudoin-
tegrable one. In the model, a point particle with mass rn

moves inside the square well of size L of infinite height.
On one corner of the well, there is an additional struc-
ture. The construction of the structure is shown in Fig.
1. We imagine a square of size R (&L) sharing two
sides with the outer well, and the square is divided into
N equal cells (or boxes) of size R/N. We draw a circle
of radius R centered on the common corner of the inner
square and the outer well, and place the potential wall
along the boundary of cells in such a way that the wall
traces the semicircle as closely as possible with a given
number of the cell division N. With the two-dimensional
coordinate shown in Fig. 1, the motion of the particle in

the billiard is formally described by the Hamiltonian

H = [p, +p, . ]+Vo+gV;/,1

2fkl V

where p, and p, . denote the x- and y-axis components of
the momentum. The potential energy of the outer well

Vo is given by

Vo=O (0(x (L and O~y (L),

FIG. 1. The construction of the corner structure of the bil-
liard. The division number in this case is IV=5.

where d is the distance between two orbits as the func-
tion of time t, is trivially zero for all orbits except those
of a set of measure zero which hit a corner in a finite
time. The Kolmogorov entropy K is defined as the aver-
age value of the Liapunov exponent over all orbits at
fixed energy. For our billiard, K is automatically zero at
all energy.

We calculate the spectra for the quantum system by
straightforward diagonalization using the Fourier basis
states for a square billiard of length L. In actual calcu-
lations, we have to replace the infinite potential in Eq.
(3) by finite strength s. To correctly simulate the infinite
'ieight potential, the strength s must be substantially
,arger than the maximum kinetic energy in a given trun-
cated basis T,, On the other hand, s cannot be too
large in order not to cause round-oA error. We found
s —100T .„„to be a good compromise. Our results were
found to be numerically stable against variations of s.
After some numerical experiments, we found that for the
billiard of the ratio R/L =0.1 to 0.5, truncating at about
2500 states is sufticient to obtain about 300 lowest eigen-
values with an accuracy better than 1%. The error in the
difference between two adjacent eigenvalues was typical-
ly better than 5%. As usual the states are desym-
metrized in order to remove the degeneracy caused by
the reflective symmetry (x~y) of the system. This
corresponds to only considering states which are an-
tisymmetric with respect to this symmetry in our statis-
tics.

We focus on two statistical quantities, namely, the dis-
tribution of nearest-neighbor spacing Pg and the Dyson-
Mehta rigidity A3, which are defined' by

number of adjacent pair levels (j,j+ 1) in which x & (F/+ ( E/)/D (x+dx-
P~ x dx=

total number of adjacent pair levels sampled

where D is the average level spacing, and

1 E+I /2
Aq(L) =—min dE')n(E') —AE' —))))z,L,~,a" ~ —~/'2
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where n(E) is the cumulative number of levels from
ground state to energy E. The symbol ( )E stands for the
averaging over energy E. Note that for two-dimensional
billiards the average level spacing D is constant as a
function of E except for the very low E region. ' In or-
der to increase the statistics, we include systems with
different size boxes. After having observed that PD and
A3 are roughly invariant with respect to the size of the
boxes for a few hundred low-lying states, we collected
200 lowest states (after discarding 50 lowest states to in-
sure the constancy of average level spacing) from four
different sizes of boxes R=0.2L, 0.3L, 0.4L, and 0.5L.
The results are shown in Fig. 2 for three examples N =1,
8, and 16. Solid lines in the figures are the predictions of
the Gaussian orthogonal ensemble. One can see from
the figures that even the single-box billiard shows re-
markable similarity to the GOE distribution. The level
statistics of the N=16 billiard are virtually indistin-
guishable from the GOE in the bin scale given in the
figure and within the statistical Auctuations. The shape
change of PD and h, 3 with the variation of N is found to
be smooth; for example, the values between N=8 and 16
give intermediate results both for PD and for h, 3.

Our principal result is that a quantum system whose
classical analog is nonchaotic can have level statistics
which are well approximated by the GOE. It is impor-
tant to note that as we increase N the spectrum is in-

creasingly well approximated by GOE statistics. This is
true despite the fact that the standard measures of classi-

cal chaos, such as the Kolmogorov entropy, do not in-
crease. A sensible interpretation of this result calls for a
careful analysis of the limiting process N ~ and of
the semiclassical limit. Clearly for any finite N, the clas-
sical system is not chaotic. However, it is not at all clear
whether the classical mechanics is even well defined for
N ~. The quantum mechanics, on the other hand, is
well defined, and is equivalent to the Sinai problem at
this limit.

It has been argued that any relationship between
quantum statistics and classical motion can only be valid
in the semiclassical regime. ' The semiclassical limit

may be defined as the limit in which the typical varia-
tions of the quantum wave functions, i.e. , 1/k where hk
is the typical momentum, are much shorter than any of
the relevant scales in the problem. It is plausible that in

the semiclassical limit, the level statistics does reflect the
degrees of order in the classical system. One demonstra-
tion of the need for the semiclassical limit is the behavior
of the spectrum of the Sinai billiard. In the small-kR
limit, where a perturbative treatment is valid, ' one can
show that the low-lying spectra are characterized by a
non-GOE spectrum close to the integrable spectrum for
a blank billiard (i.e. , square box). The semiclassical
spectrum (kR»1), however, is GOE. For the pseu-
dointegrable system being considered here, one must go
to energies which give wavelengths that are very small
compared to the size of the boxes at a corner in order to
reach the semiclassical limit. Note that in the N
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FIG. 2. (a) Nearest-level spacing distribution PD(x) for the level spectra of the square billiards N=1, 8, and 16. Solid lines are
the predictions of the Gaussian orthogonal ensemble. (b) Dyson-Mehta statistics h3(L) for the level spectra of the square billiard
% =1, 8, and 16. Solid lines are the predictions of the Gaussian orthogonal ensemble.
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limit the energy at which semiclassical physics sets in

gets pushed oA to infinity. The energy levels we con-
sidered in our system are not in the semiclassical regime
since the wavelengths for the highest-energy states in-
cluded in our statistics are larger than the box size. In
this case one expects that the observables cannot depend
on the sharpness of the edges of boxes since the edges
cannot be resolved. Thus as far as the quantum system
is concerned there is very little diAerence between our
pseudointegrable system and the chaotic Sinai billiard
problem.

If the preceding analysis is correct, the fact that our
model spectra closely resemble GOE statistics does not
contradict the proposed association of GOE statistics
with chaos in the corresponding classical physics provid-
ing one restricts this association to semiclassical quan-
tum spectra. We note, however, that our result does
have practical significance because in nature all systems
are quantal, and all the information one can obtain is ul-
timately about the various matrix elements. In most sit-
uations, one cannot tell whether one is truly in the semi-
classical regime just by looking at the level spectra.
Thus, if the quantum spectrum appears to be GOE one
cannot automatically conclude that the corresponding
classical system is chaotic.

Finally, we note that there might be a way to define a
parameter which controls the characteristics of the quan-
tum level statistics by incorporating the uncertainty prin-
ciple in the Liapunov experiment. Normally, one judges
the degree of chaos of an orbit by studying whether a
pair of close orbits diverge exponentially. This is the
meaning of the d 0 limit in the definition of A in Eq.
(4). It is reasonable, however, when trying to discern the
eA'ect of the classical mechanics on quantum physics, to
only look at scales which can be resolved by quantum
wave functions. Thus, one may want to consider how
two orbits diverge which are spatially separated by dis-
tances comparable to the wavelength. Such orbits can
diverge faster than any power law. In such a cir-
cumstance, within a finite time, one orbit can hit one step
while its neighbor can hit a diAerent step leading to a
large separation over time. Thus one sees that at a
coarse-grained level the system is essentially chaotic and
the fact that it closely resembles a GOE spectrum may
not be too surprising.
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