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Statistical Mechanics of a Nonlinear Model for DNA Denatnration
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We investigate the statistical mechanics of a simple lattice model for the denaturation of the DNA
double helix. The model consists of two chains connected by Morse potentials representing the H bonds.
We determine the temperature dependence of the interstrand separation and we show that a mechanism
involving an energy localization analogous to self-focusing may initiate the denaturation.
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The dynamics of DNA transcription is one of the most
fascinating problems of modern biophysics because it is
at the basis of life. However, it is also a very difficult
problem due to the complex roles played by RNA po-
lymerases in the process. It is now well established' that
a local denaturation of DNA is involved so that it is in-

teresting to investigate the thermal denaturation of the
double helix as a preliminary step for understanding the
transcription.

In the last few years the idea that nonlinear excita-
tions could play a role in the dynamics of DNA has be-
come increasingly popular. Englander et al. first sug-
gested a theory of soliton excitations as an explanation of
the open states of DNA. Later Yomosa proposed
another soliton theory using a plane base-rotator model
that was further refined by Takeno and Homma, who
introduced a model allowing some discreteness effects to
be taken into account, and by Zhang, who improved the
model for base coupling. However, although all these
models exhibit solitary-wave solutions with a kink shape
that could represent open states, the solutions were al-
ways obtained in a continuum-limit approximation,
which is probably a severe approximation for DNA, and
they were not related to the thermal denaturation of
DNA since no statistical mechanics of the models was
considered. At the same time, an alternative approach,
more closely connected to experimental data was
developed: Vibrational normal-mode analysis of infrared
and Raman experiments suggested that local melting
could be achieved through breathing modes and a self-
consistent phonon theory was proposed for the hydrogen-
bond melting. The essential role of strong nonlineari-
ties was pointed out recently by Prohofsky' and the aim
of this work is to treat these intrinsically in a model simi-
lar to those used to analyze the infrared and Raman ex-
periments. We employ a transfer integral technique to
analyze the statistical mechanics of the model and deter-
mine the interstrand separation in the double helix as a
function of temperature. This method is well suited for

discrete models so that no continuum approximation is
necessary.

For each base pair, our model includes two degrees of
freedom u„and v„which correspond to the displace-
ments of the bases from their equilibrium positions along
the direction of the hydrogen bonds that connect the two
bases in a pair. Following previous investigations on
DNA, ' the potential for the hydrogen bonds is approxi-
mated by a Morse potential. (Our discussion below is
readily adapted to any pair potential, but the Morse po-
tential is especially convenient analytically. ) A harmonic
coupling due to the stacking is assumed between neigh-
boring bases so that the Hamiltonian for the model is

H =g —,
' m (u„'+ i„')+ —, ic [(u„—u„ 1 ) '+ (v„—v„ 1 ) ']

+ V(u„—v„),

with

V(u„—v„) =D[exp[ —a(u„—v„)] —I]'.
For simplicity we have neglected the inhomogeneities
due to the base sequence and the asymmetry of the two
strands: We use a common mass m for the bases and the
same coupling constant k along each strand. The Morse
potential V is an average potential representing the two
or three bonds which connect the two bases in a pair. It
can be estimated from the parameters obtained for the
individual bonds by the analysis of the vibrational modes
of DNA. "

With these assumptions, the motions of the two
strands can be described in terms of the variables

x„=(u„+v„)/J2, y„=(u„—v„)/J2,

which represent the in-phase and out-of-phase motions,
respectively. Only the out-of-phase displacements y„
stretch the hydrogen bonds. The Hamiltonian (1) be-
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comes

2 2

H =H(x)+H(y) =g' +—k(x„—x„—i) '+pi +—k(y„—y„—1) +D[exp( —a J2y„) —I]n, 2m 2, n, 2m 2
(2)

where p„=mx„and q„=my„.
For a chain containing N base pairs, the classical par-

tition function, given in terms of the Hamiltonian (2),
may be factored as

Z = +dx„dy„dp„dq„e
n= l

ZP Z Q Zi'I Zl' (3)

and, since the coupling involves only nearest-neighbors
interactions, Z, . can be expressed in the form

IIdy. c """-'
—oo

(4)

The two momentum parts are readily integrated to give
the familiar kinetic factor for N particles:

Zp =Z, =(2nmkeT)

Since the motions in x and y are decoupled, Z is simply
the contribution of the potential energy in a harmonic
chain, so that it is given by

operator' "

(ej sp D)pi (y), '(6)

with sp = (1/2P) ln(Pk/2x).
Equation (6) is formally identical to the Schrodinger

equation for a particle in a Morse potential, so that it
can be solved exactly. ' ' This equation has a discrete
spectrum when d—:(P/a)(kD) 'i & 2 and the eigenvalue
and the normalized eigenfunction for the ground state
are then

dy„e '""" ' v;(y„—1) =e "v;(y„).
The calculation is similar to the one performed by
Krumhansl and Schrieffer ' for the statistical mechanics
of the p field. It yields Z, , =exp( —NPep), where ep is
the lowest eigenvalue of a Schrodinger-type equation
which determines the eigenfunctions of the transfer in-
tegral operator (5),

B2

2
+D(e '-' —2e '-')v;(y)

2P k By

where f denotes the potential-energy component H(y).
This integral (4) can be evaluated exactly in the thermo-
dynamic limit of a large system (N ~) using the
eigenfunctions and eigenvalues of a transfer integral

t and

1 Pk a D
5p = ln +

2P 2' P k

l/2
a

4P k

1/2 (2d)
yp(y) =(J2a)' exp( —de "')exp[ —(d —

& )J2ay].[r(2d —1)] ' ' (8)

The results (7) and (8) can be used to compute the
free energy F= —ke Tln(Z) of our model. It is obtained
as the sum of the diA'erent contributions in Z [Eq. (3)].

More interesting for the study of DNA denaturation is
the mean stretching (y„,) of the hydrogen bonds. It is
given by

N

(y„,) =— +y„,e ~ dx„dy„dp„dq„,
n=l

but, since H [Eq. (2)] separates into a sum over the x, y,
p, and q variables, (y„,) reduces to

N

(y») = JIHy„, e '""" ' dy„.
i =1

As the model is assumed to be homogeneous, the result
does not depend on the particular site m considered. The
integral can again be calculated with the transfer in-
tegral method ' ' and yields

g;=i(v;(y) ty t v;(y))e

g;=, (v;(y) t v, (y))e

t

In the limit of large N, the result is again dominated by
the lowest eigenvalue ep so that (y) is given by

(y) =(vp(y) ty tvp(y)) =„vp(y)ydy
for the normalized eigenfunction pp(y). This integral
has been evaluated numerically with the expression (8)
of yp(y). The results are shown in Fig. 1 for three values
of the coupling constant k. In the calculation, we have
used D=0.33 eV and a=1.8 A ' which corresponds to
mean values for the N —H . N and N —H 0 bonds
in the A —T and G —C base pairs. This figure shows a
rapid increase of (y) around a particular temperature
which is a characteristic of DNA denaturation as ob-
served for instance by measuring its absorbance of ultra-
violet light at 260 nm. ' The denaturation temperature is
indeed sensitive to the parameters of the hydrogen bonds
which bind the two strands, but Fig. 1 shows that it is
also very sensitive to the intrastrand interaction con-
stant, a parameter which is not so well determined exper-
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imentally. As k increases the denaturation temperature
increases. This is consistent with the increase observed
experimentally in the presence of reagents that increase
the hydrophobic interactions. Our results indicate that
k must be of the order of 3.0x10 eV/A to obtain a
reasonable denaturation temperature. This value indi-
cates a weak coupling between the transverse base
motions in DNA indicating that discreteness effects have

to be taken into account in the models describing DNA
denaturation in terms of solitary waves.

Although it indicates at which temperature the dena-
turation occurs, the calculation of (y) does not indicate
how it occurs. To explore this aspect, it is interesting to
relate our model to those involving nonlinear excitations.
Since the nonlinearities appear in terms of the variable y,
we consider the equation of motion which derives from
H(y) [Eq. (2)l:

m |I y„/Bt —k(y„+1+y„—1

—2y„) —2J2Dae "(e "—1)=0.
The phenomena which are precursors to denaturation can be investigated by expanding Eq. (10) for small y as

m 8 y, /&t —k(y, +1+y, —
1

—2y, )+4Da y„—642Da y„+ '3' Da y„=0.
A solution of this equation can be obtained via a multiple-scale expansion' as

y„=F i (X„,r)e "+c.c.+e[Fo(X„,r)+F2(X„,r)e "+c.c.],

(10)

(12)

with X„=ex=enl and a=et, l being the lattice spacing,
i.e., the mean distance between adjacent bases. In this
expression y is written as a modulated wave in which the
carrier wave exp(i8„) =exp[i(qnl —tot)], with co and q
related by the dispersion relation of the lattice, includes
the discreteness effect while the modulation factor is
treated in a continuum limit (the so-called semidiscrete
approximation ' ). However, for a qualitative under-
standing of the denaturation, we can restrict ourselves to
a continuum approximation for the carrier wave as well,
which significantly simplifies the calculations. The dc
and first-harmonic terms in (12), Fo and F2, are neces-
sary because Eq. (11) contains an even power of y. The
multiple-scale expansion yields a nonlinear Schrodinger

'to 10
A
O

i (NLS) equation for Fi(X, z) (Ref. 17),

iFi. +l'Flzz+Q IF| I
'Fi =o,

with Z =L—
Vg T, s =ET;, and

de ~ kl kl /m &~ 16Da
dq co m

' 2' '
corn

The solitary waves in y resulting from this equation are
the breathing modes suggested by the infrared and Ra-
man experiments.

The statistical mechanics of the NLS equation has
been investigated recently by Lebowitz, Rose, and
Speer. ' They show that, since the associated Hamil-
tonian is unbounded below in energy, the systems can de-
velop singularities in a finite time. Such singularities,
which correspond to self-focusing phenomena in plasmas,
may be responsible for nucleation of DNA denaturation
because they occur when the L norm of the field

t L

N(F, ) =
I F, I

'»
(where L denotes the size of the system) is such that NP
exceeds some threshold value. In our calculation, N(F i )
is given at temperature T by (y ) which can be calculat-
ed similarly to (y) and is given by an expression analo-
gous to Eq. (9):
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FIG. 1. Variation of (y) as a function of temperature for
three values of the coupling constant k: (a) k =2.0x10
eV/A, (b) k = 3.0 x 10 eV/A, and (c) k =4.0 x 10 eV/

2

(y') =(vo(y) iy'iv0(y)) =„vo(y)y'dy. (13)

Figure 2 shows that (y ) rises by several orders of mag-
nitude in a small temperature range around DNA dena-
turation so that the threshold for energy localization
could be reached. This suggests that the denaturation
"bubble" observed experimentally at the beginning of
the denaturation process could be created by energy lo-
calization due to nonlinear effects It is, however, .
difficult to provide a more quantitative analysis of this
phenomenon within the framework of the present model
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not include the inhomogeneities present in natural DNA.
The transfer integral technique can be adapted to in-
clude these extrinsic nucleation centers which can be ex-
pected to lower the denaturation temperature. ' This
eAect is also seen in numerical simulations and will be
investigated in future works.
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FIG. 2. Variation of (y ) as a function of temperature for
three values of the coupling constant k: (a) k =2.0x10
eV/A, (b) k =3.0x10 eV/A, and (c) k =4.0x10 eV/

because the coefficients of the NLS derived in the limit
of small y depend on the frequency of the carrier wave
introduced in the expansion (12). Although this fre-
quency must lie within the frequencies of the lattice pho-
non modes, it is not well defined for the thermal Auctua-
tions that we consider here.

Thus, the analysis of the precursor phenomena in
terms of a small-amplitude expansion leading to a NLS
equation suggests that the process could be initiated by
an energy-localization phenomenon analogous to self-
focusing in plasmas. However, the results presented here
are only a first step toward the understanding of DNA
denaturation which is known to be very sensitive to
external factors, such as salt concentration. In our mod-
el, the variation of the coupling constant k gives only a
phenomenological description of these factors. More-
over, although the variables u„and v„could also repre-
sent base rotations provided that the parameters of the
potential V are chosen appropriately, the introduction of
additional degrees of freedom will be necessary because
the low sensitivity of the vibrational behavior of DNA to
the number of bridging hydrogen bonds suggests that the
"melting" of the hydrogen-bond bridging is only part of
the strand separation process. Finally, our model does
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