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Berry’s phase is defined for the dynamics of electrons in periodic solids and an explicit formula is de-
rived for it. Because of the special torus topology of the Brillouin zone a nonzero Berry phase is shown
to exist in a one-dimensional parameter space. Symmetry of the Bloch functions in the Brillouin zone
leads to the quantization of Berry’s phase. A connection is established between the latter and the
Wyckoff positions in the crystal in the framework of band representations of space groups. Berry’s phase
can therefore be used for labeling energy bands in solids.

PACS numbers: 71.25.—s, 03.65.Bz, 61.50.Em

The concept of Berry’s phase! has recently caused a
great deal of interest in a variety of fields in physics.
Thus, in the last two years experiments have been car-
ried out for measuring this phase in neutron spin rota-
tion,? in nuclear quadrupole resonance,’ in rotation of
polarized light,* in fractional quantization of orbital
quasirotation of molecules,®> and in electronic states of
Jahn-Teller systems.® In addition, a considerable num-
ber of theoretical papers have been published dealing
with both quantum’ and classical® aspects of the prob-
lem. It seems, however, that one important and natural
system for the appearance of Berry’s phase was left out.
We have in mind the motion of an electron in a periodic
solid. That such a system should be of interest can be
seen in the following way.

In solids the energy spectrum has a band structure,
e.g., it is piecewise continuous. The energy in each con-
tinuous piece depends on the Bloch quasimomentum k,
which varies in the Brillouin zone. What is most charac-
teristic for the concept of Berry’s phase is the existence
of a continuous parameter space in which the state of the
system can travel on a closed path. Such a parameter
space exists naturally in the band structure of solids.
This parameter space is the Brillouin zone which is a
torus, and in which the Bloch k vector is used for de-
scribing an energy band.® In a periodic solid k is a con-
served quantity and the Bloch function y,(r) is
specified by a band index »n and k. If by applying a per-
turbation to the solid one can make k vary on a closed
path in the Brillouin zone, then ,x(r) should, in gen-
eral, pick up a Berry phase. Since the Brillouin zone is a
torus, one can vary k in a given direction and when the
edge of the zone is reached the path closes automatically.
This is best seen in a one-dimensional solid where the
Brillouin zone is the interval [— n/a,n/al with the end
points — r/a and n/a identified (a is the lattice con-
stant). In the particular case of a one-dimensional crys-
tal, when k is made to vary in the whole Brillouin zone,
the Bloch functions y,x (x) correspond to the whole en-
ergy band. One should therefore expect that when k
sweeps the interval [—n/a,n/al, the Bloch function

wank (x) will pick up a Berry phase. This is a very amaz-
ing situation because in a one-dimensional crystal
wak (x) can be chosen to be periodic in k& with the period
2n/a of the reciprocal lattice. Nevertheless, because of
the torus topology of the Brillouin zone a Berry phase is
picked up when k is forced to vary by an external pertur-
bation through the entire zone. In solids the continuous
parameter space is therefore already built in as a part of
the unperturbed problem. What the perturbation does is
that it makes k vary in this parameter space (the Bril-
louin zone). It should be pointed out that in all the
above-mentioned physical systems for the observation of
the Berry phase the parameter space is multidimension-
al.'® Because of this very unique situation in the Bloch
dynamics of solids, we shall concentrate in what follows
on one-dimensional crystals. Keeping in mind that an
entire energy band corresponds to the variation of k in
the Brillouin zone [—n/a,n/al, one is to expect that the
Berry phase which is picked up by w,x (x) in such a vari-
ation process should have to do with some characteristic
feature of the energy band as a whole entity. Such a
characteristic feature is known to exist in the framework
of band representations of space groups'® and it is de-
scribed by the band-center operator.!' The eigenvalues
of the latter correspond to the Wyckoff positions in the
solid. A connection should therefore be anticipated be-
tween the Berry phase and the band center in the dy-
namics of electrons in solids. This is shown in what fol-
lows.

In this Letter I derive a formula for the Berry phase
for an electron in a periodic potential (one dimension) in
the presence of an externally applied time-dependent
vector potential 4(¢z). The formula turns out to coincide
with the expression for the band center in the framework
of the band representations of space groups.'®'" When
the linear chain has no symmetry, the Berry phase can
assume any value. However, when inversion symmetry is
present, Berry’s phase becomes quantized, and it can as-
sume only the values 0 and = (modulo 27). For three-
dimensional solids, the Brillouin zone is a three-dimen-
sional torus and one expects to obtain a nonvanishing
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Berry phase for any closed path in the Brillouin zone.
When symmetry is present one can make k vary through
the entire Brillouin zone in a given symmetry direction.
As a consequence of symmetry in the Brillouin zone (pa-
rameter space) Berry’s phase turns out to be quantized
and it assumes well defined discrete values that corre-
spond to the Wyckoff positions in the crystal.'> Our con-
clusion is that Berry’s phase can therefore be utilized for
specifying entire bands in solids, in very much the same
way as the band center is used in the framework of band
representations of space groups.

Consider a Bloch electron in one dimension under the
influence of a time-dependent vector potential 4(z). The
Schrodinger equation for this problem is

9 1 ’
ih [ .

3 +V(x) |y, 1)

p——e-A(t)
c

where V(x +a) =V (x). At this stage there is no need to
specify the source of the potential 4(¢z). However, the
assumption will be made that A(z) is time dependent
only and that the variation of 4(z) with time is adiabatic
[the frequencies corresponding to the relevant gaps in the
energy spectrum of the solid are much larger than the
frequencies in the Fourier expansion of 4(z)]. Having
defined the problem, one could directly use Berry’s
closed formula' for the dynamics of electrons in solids.
However, it is instructive to rederive it again because,
unlike in Ref. 1, the spectrum of Eq. (1) is bandlike
(quasicontinuum), and the parameter space is one di-
mensional. Following the adiabatic approximation one is
to solve the equation

1
2m
where n labels the energy band and €,(¢) is the energy
function (its meaning is given below). Equations (1)
and (2) are well known in the literature of a Bloch elec-

tron in an electric field,'>'* and one can seek a solution
of Eq. (2) in the form

2
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where k is the quasimomentum [in exp(ikx) it is time in-
dependent, while in the function u, k(t) =k —(e/ch)
xA()] and u,(x) is the periodic part of the Bloch
function. It satisfies the equation

1
2m

where k in the Hamiltonian is time independent, and
where ¢€,(t) of Eq. (2) is now written as €, (k(z)) [e,(k)
is the energy spectrum for the band nl. With these nota-
tions, it now follows that the solution of Eq. (1) can be

2
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given the adiabatic form '3

Y s (5

w(x,t) =exp [i}',, (t)— %j;le,, (k(2"))dt'

where y,(t) is a time-dependent phase for the energy
band n. By substituting this solution into Schrédinger’s
equation [Eq. (1)] and by using Egs. (2) and (4), one
finds [u(x) is normalized as Qa/a) [§|un (x)|>dx
=1] for Berry’s phase y, the expression

’

{?n (t)=ij; uﬁ(z)(x)%unkm(x)dx
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where the quantity X,,(k) is widely used in the band
theory of solids and is given by '!"!*

a 1 (x)
xnn(k)=%” J; u,ﬁ(x)i—l%dx. %)

It is clear that the result for y, [Eq. (6)] is obtained
when k is made to vary over the whole Brillouin zone
[—n/a,x/al by the external perturbation A(t). Here
the following remark is appropriate. Originally, Berry’s
phase was defined for a system with a cyclic Hamiltonian
H(t+T)=H(t), where T is the period of the cycle. Our
Hamiltonian does not satisfy this cyclic condition. How-
ever, for k to vary over the Brillouin zone, A(¢) has to
change by 27/a [see Eq. (4)]. In the Bloch problem such
a change of k in Eq. (4) should be considered cyclic be-
cause this is a gauge change which is compensated by
the fact that uu +2./.(x) =exp(—i2zxx/a)un, (x). The
Bloch problem is therefore a generalization of the Berry
phase to a noncyclic change of the Hamiltonian, up to a
gauge transformation. We would like to point out that
the result for Berry’s phase [relation (6)] is gauge invari-
ant. As an example, consider the constant electric field
E, when A= —cE. Then by a gauge transformation
expl — (1/h)eExt], the Hamiltonian in Eq. (1) will be-
come (1/2m)p*+V(x) —eEx. A corresponding change
will appear in Eq. (4). We can still seek the solution in
the form of Egs. (3) and (5) but now k is time depen-
dent in exp(ikx) of Eq. (3). By using the acceleration
theorem Ak = —eE one recovers the result (6) for
Berry’s phase. Formula (6) coincides in form with the
original expression of Berry.! The novel feature of this
formula is in the fact that we have here, for the first
time, the appearance of Berry’s phase for a one-dimen-
sional parameter space in a purely quantum-mechanical
system (the Bloch problem has no analog for a particle
in classical mechanics). It will soon be shown that v, is,
in general, nonzero.

By using the periodicity properties of u,; (x) it follows
that X,,(k) [Eq. (7)] is periodic in k with the period
2r/a (the constant of the reciprocal lattice). It also fol-
lows from Eq. (7) that X,,(k) is phase dependent;
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e.g., when uuy— dnk =explo)uni, Xum (k) — X (k)
=X,,(k) —08¢/0k. Since the general form for ¢ is
mka+ a(k), where m is an integer and a (k) is a periodic
function, the phase y, in Eq. (6) changes by —2zm un-
der such a general phase transformation. This means
that exp(iy,) [in Eq. (5) for the wave function] is invari-
ant under any phase transformation and it is therefore a
well defined quantity for each energy band.

By using the Wannier function a,(x) for the band n,
an alternative expression can be derived for y,. Thus,
with the help of the relation between u,; (x) and a,(x),
which is'?

12
explikx)uy (x) = [2;‘7:] Y explikma)a,(x —ma) ,(8)

v, assumes the form [Egs. (6)-(8)]
nla a
n = X (k)dk = | —
Y f—ir/a (k) [ 2r ]

—1

f_mmx la,(x)|?dx. (9)

Formula (9) gives Berry’s phase for the nth energy band
expressed either via the Bloch function u,;(x) or the
Wannier function a, (x) of this particular band.

Let us now connect the result in Eq. (9) to the band
center'! and the Wyckoff position'? of the energy band.
In Ref. 11 the band center for the energy band n was
defined by the following formula [Eq. (5) of Ref. 11]:

_a n/a _r= 2
an =" f_”/aX,,,,(k)dk—-f_mxla,,(xﬂ dx. 10)

By comparing g, with y, we see that the following con-
nection holds:

vn=Qn/a)q, . a11)

When there is no symmetry in the one-dimensional
chain, g, as well as y, can assume any value as a func-
tion of the band index n. However, when inversion sym-
metry is present, it follows from the symmetry of the
Wannier functions'' that g» can assume two values only,
g, =0 or a/2. This follows from the following argument.
When the crystal possesses inversion symmetry, the
phase of the Bloch function can always be chosen in such
a way as to make the Wannier function even or odd
around either of the two centers'® x=0 or a/2. Thus,
assume that a,(—x)==*a,(x), it then follows that
gn=0 [see Eq. (10)]. In the other case, when
a,(—x+a)=*a,(x) (inversion around a/2), then it
follows from Eq. (10) that g, =a/2. 0 and a/2 are also
the Wyckoff positions of the one-dimensional crystal.
From Eq. (11) it follows that Berry’s phase for a one-
dimensional crystal with inversion symmetry can be O or
m only. Equation (11) establishes therefore a connection
between Berry’s phase, the band center, and the Wyckoff
position.

Having established the connection between Berry’s
phase and the label of an energy band as a whole entity,
let us now come back to the question of the specification

of the vector potential A(¢z) in Schrddinger’s equation
[Eq. (1)]. It was required that 4(¢) changes adiabati-
cally and that it makes k vary over the entire Brillouin
zone. This requirement is not very restrictive and is
practically met by any homogeneous external electric
field E whose frequency is much smaller than the
relevant band gaps.!” Such an electric field is derived
from the following vector potential: A(t) =—cfoE (')
xdt'. The variation of k with time is then given by the
relation’ Ak = —eE(z) which holds also for a time-
dependent adiabatically varying electric field. A particu-
lar case is the constant electric field which has been
widely investigated in connection with the Wannier-
Stark ladder problem.'® It is of interest to point out that
the Wannier-Stark spectrum contains the band center g,
[Eq. (10)] explicitly.'® Since y, is connected to g,, this
establishes a connection of Berry’s phase to the well
known Wannier-Stark ladder problem in solids.'® Bear-
ing in mind that different energy bands, say n and n’',
have, in general, different y’s (when symmetry is present
y assumes the values 0 and n only), electrons in these
two bands will pick up different Berry phases in the pres-
ence of an electric field. In principle, any interference
experiment with electrons from two such energy bands
should enable one to measure the phase difference be-
tween v, and y,. This is so very much in principle, be-
cause one has to make sure that the phase is fully con-
trolled by the electric field and that scattering by imper-
fections can be neglected. As is well known this is not a
simple problem. '8

The generalization of the results to three-dimensional
crystals is straightforward conceptually, but technically
the problem becomes much more involved because of the
energy-band topology in three dimensions.'®?° No at-
tempt will be made here to go into any details, but one
should point out that the Berry’s phase in the framework
of energy bands in three-dimensional crystals is a very
exciting and rich subject. In particular, the whole band-
labeling problem will assume the geometrical form of to-
pological invariants.

In conclusion, we have shown how to define Berry’s
phase in the dynamics of electrons in solids. There are a
number of unique features that appear in this problem.
First, the parameter space is furnished by the system it-
self, namely, the Brillouin zone of the solid. This is un-
like the other physical examples of the appearance of
Berry’s phase'™® where the parameter space is intro-
duced externally, e.g., the parameters of the magnetic
field, >3 the optical fiber parameters,4 etc. In the case of
the solid the parameter space (the Brillouin zone) exists
naturally and what the external field does is to change
the Bloch quasimomentum k inside this space. Second,
the Brillouin zone is a torus and this is why even in a
one-dimensional parameter space a nonvanishing Berry
phase can appear. Third, the Bloch states possess sym-
metry properties in the Brillouin zone (parameter space),
and, as a consequence of this symmetry, Berry’s phase
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becomes quantized. Finally, we would like to comment
on the possible significance of Berry’s phase in solids.
We have already mentioned the Stark ladder where
Berry’s phase y, appears explicitly in the energy spec-
trum. Thus, when y,=nx, g,=a/2 [see Eq. (11)] and
the Wannier-Stark ladders is half integer. This is remin-
iscent of the influence of Berry’s phase on the molecular
spectrum, where it leads to fractional quantization of the
angular momentum.’ In three-dimensional crystals, be-
cause of the torus topology of the Brillouin zone, there
are, in general, nonvanishing Berry phases along any
path that covers a vector of the reciprocal lattice. This
by itself contains a very rich structure of Berry phases
which should lead to a better understanding of the topol-
ogy of energy bands. In addition, one can also define
Berry’s phase on closed circuits in the Brillouin zone. As
will be shown in a separate publication?' if a perturba-
tion in the solid makes k vary on a closed orbit (the im-
purity problem or the dynamics in a magnetic field),
then the Berry phase assumes the form

7 (O =P X, () dk, (12)

where C is the path of integration and X,,(k) is a
three-dimensional generalization of Eq. (7). As was
proven by Berry,' y,(C) is nonvanishing when the in-
tegration path lies in the vicinity of a point of degenera-
cy. This is very often the case in the valence and con-
duction bands of semiconductors.??> We expect therefore
Berry’s topological phase to play an important role in the
whole dynamics of Bloch electrons in solids.
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