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New Localization in a Quasiperiodic System
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We present a new type of localization phenomenon in a one-dimensional tight-binding model with a
quasiperiodic potential V„=ktanh[A cos(2nton)]/tanhA, where co is an irrational number. When A is

small, the localization starts from the center of the spectrum at a value of X; then the mobility edges
move towards the edges of the spectrum with increasing k; finally all the states become localized. This
behavior is in contrast to the Anderson localization in three-dimensional random systems. When 2 is

large, a more complicated behavior is found.

PACS numbers: 71.50.+t, 71.20.Ad, 71.30.+h

A one-dimensional quasiperiodic tight-binding model
(or discrete Schrodinger equation) is written as

—ttt„+ 1

—tlt„—1+AV(n c,o ) tlr„=E tlt„,

where co is an irrational number and V(x) is a periodic
function, i.e., V(x+1) =V(x). When the potential part
is random, it represents the Anderson model of localiza-
tion. The random electronic (or phonon) system is
known to be always localized for one dimension (rigo-
rous) and for two dimensions. Therefore one has to go to
three dimensions to study the transition between the lo-
calized and the extended states. '

It is known that the quasiperiodic systems can have lo-
calized states. In fact, they can have both extended and
localized states even in one dimension for which one can
apply many analytical or numerical techniques.

The quasiperiodic models studied well so far are (A)
V(x) =cos(2trx), (B) V(x) =tan(2trx), and (C)
V(nto) having two values 1 and —

1 which are arranged
in the Fibonacci seuqence. In model (A), all the
states are extended for k ( 2 (purely absolutely continu-
ous spectrum) and all the states are localized for X) 2
(purely dense point spectrum). At the critical coupling
k, =2, all the states are critical (purely singular continu-
ous spectrum). All the states are localized for model (B)
and all the states are critical for model (C). All the
above examples have a pure spectrum (absolutely con-
tinuous, singular continuous, or dense point). However,
these are special cases and the pure spectrum is not a
general feature of the one-dimensional quasiperiodic sys-
tems. For example, if we add one more frequency to (A)
it appears that the localization starts from the edges of
the spectrum as A, is increased and we have mobility
edges. This behavior of having localized states near
the edges of the spectrum and extended states near the
center of the spectrum is similar to that of the disordered
systems, ' and also it is natural from the mathematical

point of view. However, even the last case may be a
special case since V(x) contains only two Fourier com-
ponents and it has a rather special form.

In this Letter we study a model

V(x) =tanh[A cos(2trx)]/tanhA (2)

in order to understand the general localization phenome-
na in the quasiperiodic systems. Note that V(x) takes
only two values 1 and —1 when A goes to infinity and it
is similar to model (C). When A approaches 0 it reduces
to model (A), and for small A it is a smooth modification
of model (A) since it contains all the higher Fourier
components in V(x). All the states are localized for a
sufTiciently large coupling k) X,. ' One expects the ex-
istence of mobility edges for X & k, . One of the possibili-
ties of the mobility-edge structure is that there would be
infinitely many mobility edges. The remarkable feature
of the one-dimensional quasiperiodic systems is the ten-
dency for having a Cantor-set-like spectrum. There are
infinitely many gaps and it is topologically self-similar.
Therefore "subbands" may have mobility edges and
there are an infinite hierarchical structure of subbands in
the Cantor set. We find that this is not the case. Instead
there are a finite number of mobility edges which behave
in an unusual manner.

In order to distinguish localized, extended, and critical
states we use two methods: One is to measure the band-
widths of the periodic systems where the irrational num-
ber co is replaced by rational approximants; ' the other
is the multifractal analysis of the wave function it-
self. '' ' In both methods, it is essential to take an ap-
propriate series of rational approximants which con-
verges to the irrational number m. This corresponds to a
finite-size scaling analysis. In the following calculation,
we take to to be cr = (J5 —1)/2, the inverse of the "gold-
en mean. " Then the rational approximants are F„~/F„,
where F„ is the nth Fibonacci number defined by F„
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=F„—)+F„—2 and Fp=F~ =1. In this case, each band
is divided into three subbands as n is increased. There-
fore each point in the spectrum for the irrational limit
(n ee) is identified by an infinite sequence of 1, 0, and
—1, which represent the upper, middle, and lower sub-
bands, respectively. This situation is the same as model
(C). ' The behavior of the bandwidth and wave func-
tion along the sequence is traced to distinguish localized,
extended, and critical states.

The spectra of Eqs. (1) and (2) are shown in Fig. 1(a)
for A =1.0 and Fig. 1(b) for A =3.0. Only the lower
halves of the spectra (E &0) are displayed since the
spectra are symmetric with respect to E =0. In region I,
the spectra are dense point (localized state), while in re-
gion II the spectra are absolutely continuous (extended
state). The concrete data to distinguish them will be
presented in the latter part of this Letter. One of the
most remarkable features we find in these figures is that
localization of the wave functions does not always start
from the edge of the spectrum.

At small values of X, all the states are extended for

both 2 =1.0 and A =3.0. For 2 =1.0, localization takes
place first at the center of the spectrum as X is increased;
the boundary between the localized and the extended
states (mobility edge) moves from the center towards the
edge of the spectrum with increasing X; finally all the
states become localized at a value of ) (=2.526) as
pointed out by one of us previously. ' For A =3.0 a
more complicated behavior is found. Localization from
the edge of the spectrum occurs in addition to that from
the center, and two mobility edges (in E & 0) exist in a
range of X. For larger X, however, the localized states
near the edge of the spectrum disappear. On the other
hand, the region of the localized states around the center
gradually extends towards the edge, and finally at
k =7.28 all the states become localized.

The global dependence of this transition between lo-
calized and extended states on A and X is shown in Fig.
2. In the area below the dashed line, the states near the
center of the spectrum are extended; above the dashed
line the localized region around the center appears;
above the solid line all the states become localized. In
the area to the right of the dash-dotted line, the localized
region starting from the edge appears, and there are two
mobility edges in E & 0.

Now let us show examples of the analysis to distin-
guish localized and extended states numerically. First
we show the approach from the bandwidth measurement.
If we want to decide whether a state specified by a code
iC), Ci, C3 C4 . . . l (C = —1, 0, or 1) is extended, lo-
calized, or critical, we measure the width of the subband
pointed to by a finite part of the sequence fC~, C2,
C3 C4 . . . Cpl . This subband is a band of a periodic
system with a rational approximant F„~/F„. The
asymptotic behavior of the bandwidth B„ for large F„
determines the type of state. If the state is localized, B„

FIG. I. Energy spectra of the model defined by Eqs. (1) and
(2) with (a) 2 =1.0 and (b) A =3.0 for various values of )..
The wave functions are localized in region I, and are extended
in region II.

FIG. 2. The phase diagram on the 2-X plane. Above the
solid line all the states are localized. The state at the center of
the spectrum is localized (extended) above (below) the dashed
line. In the area to the right of the dash-dotted line, localized
states appear near the edges of the spectrum.
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should decrease exponentially as a function of F„. If the
state is extended, B„should behave as B„—1/F„unless
the state coincides with an "edge state" which is
identified by the codes [C|,C2, C3, . . . , 1, 1, 1, 1, 1, 1, . . . j

edge states, B„should behave as B„—1/F„as a result of
the Van Hove singularity. If the state is critical, B„ is
expected to decrease with an arbitrary power () 1) of
1/F„. This method was successful in other quasiperiodic
problems. ' In fact, it is related to the idea of Thou-
less' who relates the energy change due to the periodic
and antiperiodic boundary conditions of random systems
to the electronic conductivity.

Figure 3 is a plot of n [=logF„/log(1/tT) j vs F„B„for
the states with the code {0,—1, 1, . . . j when A =3.0 and
1=1.0. The states specified by [0, —1, 1, —1, 1, 1, 1, 1,
1, 1, . . . j and [0, —1, 1, —1, —1, —1, —1, —1, —1,—1, . . . j (edge states) are extended because B„—1/F„.
The state specified by [0, —1, 1, —1,0,0,0,0,0,0, . . . j is
extended as well because B„—1/F„. On the other hand,
the state specified by [0, —1, 1,0, —1, —1, —1, —1, —1,—1, . . . j is localized because B„decrease exponentially.
Therefore, there is a mobility edge located between the
two states [0, —1, 1,0, —1, —1, —1, —1, —1, . . . j and
[0, —1, 1, —1, 1, 1, 1, 1, 1, 1, . . . j, which are next to each
other. Therefore, it is concluded that a mobility edge is
located in the energy gap between the two states.

By applying the same analysis to other states, it is con-
cluded that all states from [0,0,0,0,0, . . . j to [0, —1, 1,0,—1, —1, —1, —1, —I, —1, —1, . . .j are localized, and
all the states from [0, —1, 1, —1, 1, 1, 1, 1, . . . j to
[—1, —1, 1, —1,0, —1, —1, —1, —1, —1, . . . j are ex-
tended, and all the states from [ —1, —1, 1, —1, —1

1, 1, 1, 1, 1, 1, . . . j to [—1, —1, —1, —1, —1, . . . j are lo-
calized. Thus there are two mobility edges for E &0
(i.e., four mobility edges on the whole spectrum) when

(n)
&min

1. 0

&a&

0. 8

o 1=0. 76~ tx.

o 2=0. 77

0. 6

0. 4—

0. 2

0. 0
0 1/50

I

1/2 5

I

1/15

2 =3.0 and X =1.0.
Next we show an analysis to study wave functions

themselves from the multifractal point of view. We
study the singular spectrum f(a) '' or equivalently the
entropy function S(a) ' ' of the scaling index a defined

by pi =
i liras i

—(1/F„) ' (pi="lpj =1). An extended
wave function does not have a singular probability mea-
sure and p, —1/F„so f(a) is defined at a single point by
f(a =1)=1. On the other hand, a localized wave func-
tion has nonvanishing probability only on a finite number
of lattice points (measure=O). These points have a=0
and the other lattice points with zero probability have
a=~. So one has f(a=0) =0 and f(a=~) =l. A
critical wave function with a distribution of e has a
smooth f(a) defined on a finite interval [a;„,c,„]. We
calculate f(a) numerically in a finite system (a periodic
approximation) according to the method of Refs. 12 and
13. However, in the analysis, we must be deliberate, be-
cause the numerical calculation in a finite system always
gives a smooth f(a). Therefore a careful extrapolation
is required to distinguish extended, localized, and critical
states.
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FIG. 3. Plot of F„B„vsn for A =3,0 and k =1.0. The states
specified by IO, —I, I, —I, . . . I are extended, while the state
specified by IO, —1, 1,0, —I, —I, —I, —I, . . . I is localized.

FIG. 4. Plots of (a) a~", i and (b) f ",i as a function of I/n at
k =0.76 and k =0.77 with 2 =3.0 for the state [—I, —I, —I,—I, —I, . . . I. A sharp transition is observed between ) =0.76
and k =0.77.
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Figures 4(a) and 4(b) are plots of a ";„and f ";„[a;„
and f(a;„) calculated for F„j against 1/n for the state
{—1, —1, —1, —1, —1, —1, . . . j at k =0.76 and X =0.77
with A =3.0. a ";„and f ";„ turn out to be linear with
respect to 1/n I.t is thus easy to extrapolate to n infinity
and estimate a;„and f(a;„). From these figures, it is
found that a;„=1 and f(a;„)=1 for X=0.76, while
a;„=0 and f(a;„)=0 for X =0.77. By a similar
analysis, a,. „and f(a,. „) can be estimated, and the re-
sult is that a .,„=1 and f(a .,„)=1 for A, =0.76, while
a,, =~ and f(a,. „)=1 for X=0.78. Therefore it is
concluded that the state {—1, —1, —1, —1, —1, . . . ) is
extended for k =0.76 and is localized for A. =0.77.

These two methods (the bandwidth analysis of the
spectrum and the multifractal analysis of the wave func-
tions) were used to determine whether a state is extended
or localized. The results of Figs. 1(a), 1(b), and 2 were
consistently obtained. In the model studied here, critical
states were not found.

A probable explanation of the localization starting
from the center of the spectrum is as follows. In the
present model, the probability to find a site with a poten-
tial energy near 0 (~k) is smaller (larger) than that in
model (A) in which all the states localize at once. Thus
localization (delocalization) is encouraged around the
center (edges). This model also exhibits localization
from the edge of the spectrum when A is large. This be-
havior may appear to be natural from the experiences in
the three-dimensional disordered systems. However, we
found a surprising phenomenon that the states near the
edge become extended and then localized reentrantly as

X is increased.
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