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Transverse Spin Diff'usion in Polarized Fermi Gases
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We solve a recently derived kinetic equation for a dilute quantum system at arbitrary degeneracy and
polarization M. From this equation we develop a spin hydrodynamic equation that allows the generali-
zation of the treatment of spin waves and the Leggett-Rice eff'ect to polarized degenerate Fermi gases.
We find a transverse spin-diff'usion collision time r~ that is often shorter than the corresponding longitu-
dinal collision time ti~. As T 0, r~ approaches a T-independent value, in contrast to r~~ —1/T Spin.
waves would thus continue to be damped even to T =0 K.

PACS numbers: 67.65.+z, 51.10.+y, 51.60.+a, 67.60.Fp

In 1982, Lhuillier and Laloe (LL) introduced a ki-
netic equation valid for arbitrarily spin-polarized gases.
From this equation LL were able to compute
polarization-dependent transport coefficients and to
derive a spin hydrodynamic equation that described both
longitudinal and transverse spin diffusion. The latter
equation predicted the existence of transverse spin waves
in Bose and Fermi gases obeying Boltzmann statistics.
We have been able to derive an equivalent kinetic equa-
tion valid for degenerate quantum systems at arbitrary
polarization. Here we apply this equation to transverse
spin phenomena in dilute Fermi systems. We examine
the effects of polarization and degeneracy on spin waves,
and also consider the generalization of the Leggett-Rice
effect to such situations. We find that the collision time
governing transverse spin diffusion can be much smaller
than that for the longitudinal case confirming specula-
tions made by Meyerovich in 1985. These results lead,
for one thing, to the remarkable result that the damping
of transverse spin waves becomes a constant at low tem-
peratures, even to T=0 K.

The kinetic equation derived by LL describes the time
evolution of a matrix distribution function n~(r, t) (2x2
for spin —,

' ). The collision integral produces two types of
terms —the usual dissipative terms that determine trans-
port coefficients, and a reactive term which plays a role
similar to that occurring in the Landau-Silin equation
for a degenerate Fermi Auid. This latter feature de-
scribes what is called "identical-particle spin rotation"
and is the basis for the existence of spin waves in this
system.

The Landau-Silin equation for Fermi liquids, first
presented by Silin in 1958, includes a spin-rotation term
and the generalization of Landau's mean-field terms to

the nondiagonal spin case. However, no form of the dis-
sipative collision integral was presented at that time and
Silin limited his discussion to "collisionless" spin waves.
In order to give a complete treatment of hydrodynamic
spin waves and spin-echo phenomena at low T, it is
necessary to have a (matrix) collision integral which is a
generalization of the LL collision integral to the degen-
erate polarized case.

In 1971 Silin actually presented a form of such a col-
lision integral in a kinetic-theory textbook in Russian.
To rederive, to generalize, and to simplify Silin s very
complicated result, we have used the Kadanoff-Baym
Green's-function method. (Recently the Kadanoff-
Baym technique has also been used by Ruckenstein and
Levy to treat polarized paramagnetic Auids. ) Our most
general result is expressed in terms of proper self-
energies. A reduction of this result to useful form is
easily made by use of the Born approximation for the
self-energies. Generalization of this result beyond Born
approximation is greatly complicated for degenerate sys-
tems by the dependence of the many-body T matrices on
the nonequilibrium distribution functions in a nontrivial
way. Fortunately, however, the Born approximation it-
self, with use of an effective potential, seems applicable
to a prime system of interest, dilute solutions of He in

liquid He. Of course, we might well expect that predic-
tions for dilute systems will carry over qualitatively to
strongly interacting Fermi systems. We can freely inter-
pret our kinetic equation as applying to quasiparticles
with the substitution of Landau s phenomenological in-
teractions into the mean-field energy e~ and into the col-
lision integral.

The kinetic equation that results from our derivation
is a matrix equation for n~(r, t) valid for both bosons and
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fermions. The 2X 2 version for fermions is

—Pl 1 l+ —[Vp, e„„V,np, ]+ ——[V,ep, Vp, np, ]++—[ep, np ]—

(2tr) '
dp& dp3dp46(pl+ p2

—
p3

—p4) &(ep, + ep, ep, &p4)

x —, ( [V(p~ —p3)] [[n 3n l]+Tr(n2n4) —[n3, n l]+Tr(nqn4)]

—V(pl —p3) V(pl —p4) [[n3nzn4, nl]+ —[n3nzn4, nl]+]) .

Here ep(r, t) is an energy matrix given by

e„(r,t) =epI —
& 6 yB ~+ „dp'[V(0)ITr[np (r, t)] —V(p —p')np (r, t)j . (2)

In the above V(p) is the Fourier transform of the poten-
tial, ep is p /2m*, m* is the particle mass, B is the mag-
netic field, and ~ is a Pauli matrix. We also use

~n
=I—np. The notation n], etc. , is short for n~, . De-

tails of the derivation of the kinetic equation are given in
Ref. 9.

The left-hand side of this equation contains terms fa-
miliar from the Landau-Silin equation. The commutator
([,] ) is the spin-rotation term and the anticommuta-
tors ([,]+) include the mean-field terms. In the limit of
Boltzmann statistics, the collision integral on the right-
hand side of Eq. (1) reduces to the Born-approximate
version of LL s collision integral. When all spins are
quantized along the same axis (the longitudinal case) the
collision integral becomes the conventional Uehling-
Uhlenbeck form. ' It is easy to show that the collision
integral satisfies the usual conservation laws of particle
number, momentum, energy, and spin.

The ordinary Landau equation with diagonal collision
integral, is adequate to describe longitudinal spin
diAusion. ' " However, in order to discuss spin waves or
spin-echo experiments, we use Eq. (1) to develop a mag-
netization hydrodynamic equation for the spin current,

defined by
1

J~(m) =, dpvp~ Tr(~np), (3)

where m =me is the magnetization in the local direction
e(r, t), vp, is a particle velocity, and j=x,y, z.

We proceed with a linearization and variational solu-
tion of Eq. (1). We linearize about the local equilibrium
distribution function n~ by writing n~ =n~+Bn~. This
form is inserted into the left-hand side of Eq. (1) and the
second and third terms are approximated by dropping
Bnp. We cannot drop Bn~ from the spin-rotation term
since that provides its leading contribution. The ap-
propriate local equilibrium function is diagonal in a
reference frame with z axis along e and has diagonal ele-
ments np+ and np, where np =lexpP(ep —p )+1]
Here a = ~1 and p the chemical potential for spin
species o.. For simplicity, we consider the s-wave ap-
proximation V(p) —= V(0).

If we write

Snp = —,
' (Sfpl+6ap ~) (4)

then the magnetization portion Dap/Dt of the drift term
becomes

D ap Ba'p Bm—gevp, g t +g vp, g anp ——ap x [6yB+ V(0)m] .
Bnp 1

Dt Bt; "Br; .=~( Bep, Br, ".=~i

The factor t is a quantity depending on temperature and
polarization whose value is given in Ref. 9.

We note that all longitudinal terms (those proportion-
al to e) contain the factor Bnp /Bep, which, for a degen-
erate system, constrains them to the Fermi surfaces. By
contrast the transverse term, in Be/Br;, depends on

g an„which is nonzero for all momenta between the
Fermi surfaces. We know that the solution 6'a.

~ must
strongly overlap the drift terms so that the former should
include a term in g;v;(Be/Br;)g anp . Such a term re-
sults physically from the fact that spins tipped trans-
versely away from local equilibrium constitute a distur-
bance everywhere in momentum space where there is a
net magnetization, that is, between the two Fermi

spheres. Thus we take as a trial function

where the longitudinal part is

Bm
Sap =qgvp, e g

Br; n Bep
(7)

and the transverse part is

bc' =Agvpl'gj Qanp~
t 0'

Here q and 4 are variational parameters and the unit
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vectors g; in the transverse part are perpendicular to the local magnetization direction e, i.e., g; =x Be/Br; +ye x Be/Br;,
where x and y are constants.

The form chosen for Ba~ corresponds to that used in our previous work'" and will lead to the same collision time ~!!

and the same diffusion constant D!!. However, Bcr~ is new and leads to a transverse collision time r& that differs
markedly from r~~. It will reduce to a form localized on the Fermi surfaces, like Eq. (7), only if T is finite and M is

sufficiently small.
From the linearized kinetic equation and its variational solution we derive a hydrodynamic equation for the spin

current. Here we quote only the solution:

J)(m) = —D() e-Bm

Br~

Be pm' . Be
m + ex

1+ (pm/n) 2 Br~ n Br,
(9)

where p is the spin-rotation parameter given by p = —nV(0)r&/6, and n is the density. Longitudinal spin diffusion is

described by the first term with diffusion constant D!!=e!!~!!,where a!! is a polarization-dependent parameter. ''
The effective transverse diffusion constant is given by the ratio in front of the square bracket in Eq. (9), with

D& =a&r&. (a& is a different polarization-dependent parameter. ) Equation (9) is a generalization of the Leggett
equation to arbitrarily polarized systems. Meyerovich reasoned that a relaxation approximation to the collision in-

tegral ought to contain two separate relaxation times, r~~ and r&. He also arrived at an equation like Eq. (9) and our re-
sults verify his surmise. In addition, we have found an explicit expression for T:& from our variational solution:

1 4n sinh(h/2) V(0)
dp) dp2dp3dp46'(p)+p2 —

p3
—p4)

&& 6(E}+ E2 E3 E4)(p] ' a)(pl p2) aIe nl —n2 —+e n I+n2+]n3+n4 —~ (lo)

In this a is a constant unit vector; n~ =1 —np; p, the chemical potential for spin species o, is determined to give the
correct local particle density n and spin density m; and 6 =P(p+ —p —). A similar expression has been derived for the
longitudinal collision time' ' which we reproduce here for comparison:

4~' nPV(0)', „dpidp~dp3dp4&(p~+p2 —
p3

—p4)6(f~+E2 E'3 E4)(p~ 'a)(p~ —p3) an~+nq n3+n4-h' n+n —m*"

Note that unusual forms, e.g. , n ~+ n2+ (1 —n3+) (1
—n4 ), app—ear in the expression for r&. This peculiari-
ty arises from the fact that we are concerned here with
transverse spins which can be described as a superposi-
tion of up and down components. In particular the vari-
ational form, Eq. (8), which contains the factor
n~+ —

np —,leads directly to the forms appearing in r&.
The combinations of n~ factors in r& result in an in-

tegrand which does not confine the scatterings to the
Fermi surfaces. We thus have the possibility of i& « r!!.

The evaluation of Eq. (10) is not straightforward.
However, it is fortunate that analytic and numerical
techniques similar to those used in Ref. 11 are applicable
to the present problem. This method allows us to reduce
T:& to a twofold integral which can be evaluated for all
temperatures and polarizations. The numerical results
for T:& and D& are shown in Fig. l. In the Boltzmann
limit the transverse and longitudinal quantities coincide.
Here, even if M is not small, we find
= r~~[1+O(nkTM )], D& =D~~[1+O(nkTM )], where

kT is the thermal wavelength. The equality of D& and
D!! in this regime is consistent with the theory of Ref. l.

In the degenerate limit, for small polarization

where the latter approximation holds for small polariza-
tion. When h, «1, as will be the case when the system is

degenerate but at temperatures above Tb, it is easy to
show that r& =r~~[1+O(A )], and D& =D~~[1+O(h )].

Analytic solutions for the zero-temperature limiting
behavior of z.& and D& can be derived. We find

4/31+d' 1 —d'
(12)

8 2 f(d) '

2AkTr 1+d 2Dg=
80 ~* 1

—d' 1+d'

' '(1 ds)~
f(d)

! M =m/n, r& appears to coincide with r~~, and D~ with

D!!. For larger M and T & TF, ~& falls below i!!. In fact,
as T 0, z& ultimately always approaches a finite limit
that depends on M, although for very small M this limit

may be approached only at unreachably low tempera-
tures. The temperature Tb at which T;& "breaks away"
from z!!, although not sharply defined, is given approxi-
mately by 6 = 1, or

TI, = [(1+M) —(1 —M) ] TF =MTF,
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constant given by D =D&/(I —iltm/n). Equation (14) is

valid at small tip angle either for a spin-echo experiment
or for a spin-wave experiment. [Of course, it is possible
to derive equations, analogous to (14), valid for any tip
angle. ] Thus one can measure z& in either of these two

types of experiment. A particularly remarkable feature
of Eq. (14) is that, because z& goes to a constant as
T 0, rather than to infinity, spin-wave damping per-
sists even to T=O K.

Previous spin-echo experiments'" on polarized dilute
solutions showed anomalously low values of p and D& as
T approached TF from above. Since our results show de-
viations from longitudinal behavior only for T somewhat
less than TF, our theory may not explain those anoma-
lous results.
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FIG. l. (a) Transverse spin-diffusion collision time r~ [in
units of 8 = [3/8tr V(0)kTr] (h /m* )] vs T/Tr, where Tr is

the Fermi temperature of the unpolarized gas. Polarization is
M=m/n (b) Tr.ansverse spin-diffusion constant D~ (in units
of 2AkTr/m*) vs T/Tr At high T. both r~ and D~ behave as
their longitudinal counterparts ~[~ and D~~. At T & TF, ~& may
coincide with ~[~ and D& with D~~ for a range of temperature,
but both ultimately cease behaving as T below a certain
temperature and approach finite limits depending on M. Note
that for M=0.001, r& and D& finally diverge from the T
behavior at log lpT ——3.

where

and

3 I 7

~)/(I +~) ]
Str V(0)kTF m*

t)m+/Bt +i yBm+ =DV'm+, (14)

where m+ =rn,-+im, . Here D is a complex diffusion

f(d) =I ——'„d (I —d )(5+2d +17d )

—
—,
' e(2d-' —I ) '"(I+7d')

with

0, d~[/J2,
, 1, d & I/J2.

Corrections to Eqs. (12) and (13) are of order (T/TF)',
where TF is the Fermi temperature of zero polarization.

If we combine Eq. (9) with the continuity equation for
magnetization, we can show that for small tip angles, the
components of magnetization transverse to the external
field direction satisfy '
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