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The Fokker-Planck equation for electrons in two spatial dimensions in the diAusive approximation is
solved by the alternating-direction-implicit method. The ions are modeled hydrodynamically. We dis-
cuss simulations of short-pulse (3.S ps) experiments at a wavelength of 4 pm. We find substantial
departures from Spitzer heat flow in both magnitude and direction. As a result we find that, even for
10-pm-diam laser spots, the heat flow into the target is not strongly reduced by energy escaping along
the target surface.

PACS numbers: 52.50.Jm, 52.25.Fi, 52.65.+z

Fluid codes are widely used in the analysis of laser-
plasma experiments. ' However, to obtain heat flow con-
sistent with experimental data, fluid codes need to limit
the heat flow to a fraction f of the local free-streaming
heat flow qt, =n, kT, (kT, /m, )'I, f being the so-called
"flux limiter. " The problem of evaluating the heat flow
in fluid codes in 2D is further complicated, as explained
by Strauss et al. Now, not only is the magnitude of each
component of the heat flow a concern, but also the actual
direction of the resultant heat flow q relative to the local
—VT, . As pointed out, this may be especially true in
cases where a sufficiently long electron mean free path
means that locally defined variables will not adequately
describe the heat flow, and there is therefore no reason to
suppose that q and —V T, will be parallel.

On the other hand Fokker-Planck (FP) codes can
self-consistently model non-Spitzer behavior without
recourse to flux limiters in both 1D, and, more recently
2D, and it is the 2D code that forms the basis of this
paper. The details of the 2D code have been given else-
where. There we show that alternating-direction-
implicit (ADI) differencing of the FP equation has en-
abled fast and reliable kinetic simulations to be per-
formed. The code was previously used to examine nonlo-
cal smoothing in laser-produced plasmas. Here the
code is used to examine the conditions applicable to re-
cent experiments by Willi et al. in which hot (T, =400
ev), high-density (n, ~ 10 cm ) plasmas have been
produced by picosecond laser pulses without a prepulse.
Such plasma parameters are important for basic plasma
and atomic physics studies as well as for x-ray laser
research. As we show later, the concern voiced by
Strauss et al. about the nature of the 2D heat flow is to
some extent borne out by our results from the simula-
tions of these short-pulse experiments.

We model the interaction of a 4 -pm laser of peak in-

tensity 6x10' Wcm and FWHM =3.5 ps with a ful-

ly ionized aluminum target (Z=13) with an initial den-
sity profile at t =0 ps assumed as shown in Fig. 1(a), and
with an initial uniform temperature of 100 eV. Laser
energy deposition is modeled with the inverse brems-
strahlung (IB) operator as given by Langdon. Other
absorption processes may also be operative, but IB is
sufficient to give 30k energy absorption at peak laser in-
tensity. The exponential ramp joining the upper and
lower density plateaus has a scale length of 3 pm, and
the initial maximum density is 8 x 10 cm, parame-
ters more severe than those modeled previously ' ' '

where scale lengths of 50-100 pm and densities of
2&10 cm are typically used. The z direction is into
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FIG. 1. (a) Initial electron density profile. (b) Temperature
profiles from the 1D FP code at 3 ps (continuous line) and 6 ps
(line with crosses) ~
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FIG. 2. Temperature profiles at x=0 pm (continuous line)
and x=9 pm (line with crosses) for (a) 10-pm and (b) 20-pm
spot sizes from the 2D FP code at 6 ps.

the target, and the x direction is across the target. The
target extends from x=0 to 40 pm. Spatially Gaussian
profiles for the laser intensity in x are assumed, centered
at x =0 pm with FWHM of 10 and 20 pm. Twenty

~ ~ ~

spatial cells are used in x, forty in z, and forty uniform y
spaced velocity cells. For comparison, the simulations
were also performed with a standard 2D fluid code using
uninhibited Spitzer-Harm heat flow qsp ~Te and
a 1D version of the 2D FP code.

The penetration of the heat front into the solid is
shown in Fig. 1(b), which gives the profiles of the tem-
perature at 3 and 6 ps from the 1D code. The irradi-
ances on the axis x =0 pm from the 2D FP code are used
in the 1D code. Figures 2(a) and 2(b) show the temper-
ature profiles from the 2D FP code at 6 ps for the 10-
and 20-pm laser intensity spot sizes, respectively. In
Figs. 2(a) and 2(b) the continuous line is data on the
axis x=0 pm, while the lines with crosses are taken 9
pm off axis. Comparing 2(a) and 2(b) we see that the
on-axis profiles are within 110 eV of each other. These
on-axis profiles are also comparable to the 1D tempera-
ture profile at 6 ps in Fig. 1(b). The profiles at 9 pm,
however, clearly demonstrate the efI'ect of the spot sizes,
the temperature maximum for the 10-pm case being
lower at 6 ps by approximately 500 eV than for the 20-
pm case. The similarity of the on-axis profiles suggests
that the lateral heat flow is not very important in deter-
mining the maximum temperature attained over such
short time scales. The profiles in 2(a) and 2(b) also

h th haracteristics of non-Spitzer heat ow, i.e., a
mallsharp drop from the maximum temperature and a sma,

low-temperature foot to the heat front.
The temperature contours from the 2D FP code at 6

ps for the 10-pm laser spot are shown in Fig. 3(a). This
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FIG. 3. Contours at 6 ps for the 10-pm spot size of (a) tem-
perature In e rom eV f the 2D FP code (contour interval 166.67
eV), (b) temperature in eV from the 2D Spitzer code (contour
interval 147.78 eV), (c) lql/Iqsvl, and (d) the angle 0 be-
tween q and —VT, (see text).

0

figure reveals a temperature front that lies approximate-
ly 4 pm from the critical surface along a line into the
target, with the front approximately 28 pm from the axis
in the lateral direction in the subcritical plasma. In con-
trast Fig. 3(b) shows the temperature contours for the
same conditions from the 2D Spitzer code. We see that
the Spitzer code predicts the position of the temperature
front (as represented by the 120-eV contour) to be ap-
proximately 1.5 pm further both into and across the tar-
get relative to the FP temperature front. Also, by com-
paring the FP and Spitzer temperature profiles both axi-
ally and laterally (not shown), we find that the lower
part of the FP temperature front is much shallower than
that predicted by the 2D Spitzer code. Indeed, the
Spitzer temperature profile is steep at the solid surface
(characteristically a T, ~ temperature scale-length
dependence in the region of the temperature front in
steady state). This could mean an overestimate of the
position of the Spitzer temperature front if there is
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0. 1 of qf; in the supercritical plasma and of the order of
q&, in the hot, low-density corona. Also, the angle be-
tween q and —V T, can be up to 34, resulting in a heat
Aow that is preferentially directed into the target. The
outcome, in this case, is 2D simulations that behave in a
more one-dimensional fashion than they might otherwise
have been expected to. However, simulations with
diA'erent initial density scale lengths, intensities, etc. , are
required before we are able to say whether this particu-
lar nonclassical behavior is restricted to the severe condi-
tions in these short-pulse experiments, or is a more gen-
eral feature of 2D heat flow. If the latter is true, then it
may eventually be possible to equip 2D fluid codes with
parameters equivalent to the Aux limiter f in 1D (Iuid

codes, which will reproduce the correct magnitude and
direction of the heat Aow in terms of the locally defined
electron density and temperature.
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particular instance, then, a flux limiter of f=0.1 used in

the lateral direction would not aA'ect the lateral super-
critical heat flow as its value is much less than 0. 1 of qt-,

anyway. However, the heat Aow in the subcritical plas-
ma would be reduced by nearly an order of magnitude
below that predicted by the FP simulation by such a Aux

limitation.
In summary, our 2D FP simulations of short-pulse

laser-plasma interactions have self-consistently revealed
nonclassical heat flow in terms of both magnitude and
direction. The heat Aow into the target does not exceed
0. 1 of qt.„while the lateral heat flow is much less than

FIG. 5. Plots of iq i/qr, (the crosses) and iqst, /q&, (the
lines) against i I i /) (see text). (a) i q- i /qt, and qsp i /qfs
along the axis. (b), (c)

~ q, i/qt, and i qs„~ /qf, along the lines
FF' and DD', respectively, as shown in Fig. 3 (a).
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