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Analytic Expression for Mode Conversion of Langmuir and Electromagnetic Waves
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We have derived analytic expressions, in terms of Airy functions, for the reflection and mode-
conversion coefficients of Langmuir and electromagnetic waves in an inhomogeneous, unmagnetized
plasma. The reflection coefficient for the ‘“‘direct” problem (incident electromagnetic wave) is equal in
magnitude to that for the “inverse” problem (incident electrostatic wave) and the corresponding mode-
conversion coefficients satisfy energy conservation. Our results, which are valid in the limit of nonrela-
tivistic electron temperature, T/mc?< 1, agree with earlier numerical calculations.

PACS numbers: 52.35.Mw, 52.40.Nk, 94.20.Bb

The coupling of electromagnetic and electrostatic
waves in an inhomogeneous, unmagnetized plasma has
been studied extensively.'”'® An electromagnetic wave
of frequency  incident from the low-density region,
with wave vector k inclined at an angle © with the densi-
ty gradient, is partially reflected at the electromagnetic
cutoff, where w,(z) =wcos©, and partially mode con-
verted to an electrostatic Langmuir wave at the plasma
resonance point, where ,(0) =w. This “direct” prob-
lem is closely related to the “‘inverse” problem of an ob-
liquely incident Langmuir wave, which is partially
reflected at its cutoff and partially converted to an elec-
tromagnetic wave. The direct problem is of interest be-
cause it describes an absorption mechanism for plasma
heating by electromagnetic waves, e.g., in laser fusion.
The inverse problem has bearing on the question of radi-
ative loss of energy from electrostatic waves and on the
remote detection of electrostatic wave activity, e.g., in
simulated ionospheric emissions. !

The first analytic solution for a warm plasma was
given by Piliya.’ Bafios and Kelly> used a combination
of analytic and numerical techniques but obtained a re-
sult differing significantly from Piliya’s. A numerical in-
tegration of the field equations for the direct problem by
Forslund et al.® gave results in close agreement with
Baiios and Kelly> and this result is generally accepted as
correct. In applications of these mode-conversion pro-
cesses, it is often helpful to have analytic expressions for
the absorption and reflection coefficients. Approximate
analytic expressions were derived by Speziale and Catto’
for the limiting cases of very small and very large values
of g=(koL)?*?sin’©, where ko=w/c and L is the densi-
ty gradient scale length, with ¢ the speed of light. Pert®
obtained power-series solutions valid for all g, but these,
of course, require numerical evaluation for each specific
case.

We present here analytic expressions for the mode
conversion and reflection coefficients for both the direct
and inverse problems in terms of Airy functions, valid to
lowest order in an expansion in T/mc 2 where T is the
electron temperature. Our results agree closely with the

numerical solutions obtained previously>®?# for all values
of g. We show explicitly that the mode-conversion
coefficients for the direct and inverse problems are equal,
thus validating results obtained from time-reversal sym-
metry arguments.” The analytic expressions given here
should be of use in the applications, and the technique
used to derive them should be useful for more complicat-
ed mode-conversion problems. In particular, our analyt-
ic expressions for the reflection and mode-conversion
coefficients provide a check for mode-conversion calcula-
tions in a magnetized plasma'? in the limit of zero mag-
netic field.

We treat the electrons as a warm fluid whose unper-
turbed density near the reflection layer, no=n(1 —z/L),
coincides with that of the static ions. The density gra-
dient is assumed to be the result of ionization, recom-
bination, and loss processes as occurs, for example, in the
ionosphere. Thus, unlike Forslund et al.® and Means et
al.,’ we do not include an ambipolar electric field Ey to
balance the pressure gradient force. We linearize the
fluid equations, setting n(r,t) =no+ {n,(z)expli (kyx
—wt)]+c.cl, etc., and assume pn ~ 7 =const, with y =3,
as is appropriate for high phase velocity waves. The con-
tinuity and momentum equations, together with
Poisson’s equation V- E; =4ngn, =kop, give directly

p"+Kp=g'E.IB*, (1

where the prime denotes d/dz with Zz=koz,
B*=yT/mc?, Ki=(—g)/B*—n? n.=k.clo, g)
=w}/w?=1—z/koL, and we have dropped the subscript
1 on E,. The momentum equation gives for the current
density,

J=—neeu="{(w/4r)IgE—B>Vp/k,] . )
Substituting this into Ampere’s law yields

(g—1DE=%x(B'+inp%*)+z(B%p'—in,B), 3)
and taking the curl of (3) yields

B"+K2iB=g'E,, 4)
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where B,=—iB is the magnetic field and Kj
=1—g—n?. Equations (1) and (4) show how the inho-
mogeneity couples the two amplitudes, p for the electro-
static wave and B for the electromagnetic wave. Closed
equations for p and B can be obtained by using (3) to ex-
press the E, and E,, which appear on the right-hand
sides of (1) and (4), in terms of p, B, and their deriva-
tives, but we have been unable to find analytic solutions
to the resulting equations. If, instead, we eliminate only
E, and retain E, as an auxiliary variable, analytic solu-
tions in terms of Airy functions can be obtained. Using
(3) as well as p=inE,+E, and B=E, —in,E. leads to
a differential equation for E,

E!+K?E.=in,(1—BYB/B?, &)
and an expression for E,,
E.=K,; Yin (1 —p)p—E1—BY, 6)

which can be substituted into (4). We thus have three
equations for p, B, and E., namely, (1), (4), and (5),
with E, given by (6). It is convenient to express them in
terms of appropriately scaled coordinates and wave num-
bers: Z and N for the electromagnetic components, and
¢ and n for the electrostatic components, where
Z=(koL) "Rz =p¥¢ and N2=(koL)*’nl2=q
=pB"*3p2. This yields

d’E.[ld*+ ((—n?)E. =bB(z), @)
d’p/d*+ (& —n®)p=—E.la, ®)

d*B/dZ*—(Z—N?) "'dB/dZ+(Z—-N?*»B=S, (9)

where b=iaN(1 —B2)B > a=(koLp»)'"? S=5(Z)
=—iNQ(Z—N?) " with Q=(1—p%p —a~'dE./d¢.
To obtain an analytic solution of these equations, valid
for small B, we exploit the great disparity (a factor of
B*?) between the electromagnetic and electrostatic
scales. Thus, we evaluate B on the right-hand side of (7)
at Z=¢=0, which reduces (7) to an inhomogeneous
Airy equation for E,.

We consider first the inverse problem. For this case, p
and E, must be bounded for {— —oo and may have
both incident and outgoing components for {— +oo. A
convenient solution of (7) which satisfies these boundary
conditions is

E.() =Ai+e [Gi+iAil, (10)

where'? Ai=Ai(¢(—n?)=Ai(n?>—¢) and Gi=Gi(¢
—n?)=Gi(n?—¢), and e, = —7zbB(0). (The amplitude
of E. of the incident Langmuir wave in this case_yould
be +.) From (10) and the asymptotic forms of Ai and
Gi, '3 it follows that the ratio of reflected to incident am-
plitudes is R =1+2ie,. With E, given by (10), we can
solve (8) exactly as follows:

p(&) =poAi+a " 'dE./d¢, an

where pg is a constant to be determined.

To solve (9), we use the solutions of the homogeneous
equation, namely, derivatives of Airy functions, to con-
struct a Green’s-function solution. For the inverse prob-
lem B must be bounded for Z— — oo and have no in-
coming wave component for Z— + oo, so we can write

z
B2)=8.2) [~ _dz'Bis/w

+B|(Z)wadZ’BzS/W, (12)

where B, (Z)=Ai(Z—-N?), By (Z)=A44(Z—N?),
A+(2)=Bi(Z)+iAi(Z), and the Wronskian W(Z')
=—(Z'—N?)/n. The two factors of Z'—N? in the
denominator of the integrands in (12) can be removed by

integration by parts using B|=(N2—2Z')Ai, B}
=(N2—2Z')A+, and the relation
dQ/d¢=BY*(Z—N?E./a, (13)

which can be derived using (7) and the Z component of
(3). We simplify the resulting expression for B(Z) by
again using the disparity of scale lengths, replacing, for
example, [d{'E.(C)AI'(Z'—N?) by Ai'(—N?)fdl
X E,(£'). Evaluating the resulting expression for B(Z)
at Z =0 yields a relation between B(0) and py. A second
relation between these quantities is obtained by evaluat-
ing the Z component of (3) at Z=0. It follows from
these two relations that pg is of order B*? and hence
makes only a higher-order contribution to B(Z). Then,
to lowest order in S,

B(Z2)=izNp*’a ™" [BI(O)BZ(Z)f_:d{’
+Bz(0)B|(Z)f:d¢"]Ez(C').
(14)
Evaluating (14) at Z=0 and making use of (10) gives
B(0) =izNB*a~'T(1 —in%ql) ~', (15)

where T=Ai'(g)A%(qg). From R=1+2ie,=1—2irnb

x B(0), we have

R=+ir*qD)(1 —ix%ql) ~'. (16)

The mode-conversion coefficient, | n| 2, is the ratio of

the outgoing electromagnetic energy flux S&u' and the in-

cident electrostatic energy flux Si. The total energy
flux,

S=2Rel(c/47)E,xBf +pufl, 17)

satisfies V-S=0. Using (3), the Z component of the
momentum fluid equation and p,=yn;T we have to
lowest order in S,

S.=c(koL)"’Im(Z ~'B*dB/dZ
+B883¢ " p* dpldl)/2x . (18)
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Using the large-z expressions for B(Z) and p(¢), we find
Inl?=ql2zAi'(g)|*|1—in’ql| 72, (19)

where || 2=S%/Si". 1t is readily verified that energy
is conserved, |R |2+ | n|2=1.

We now turn to the direct problem, which is somewhat
easier to solve than the inverse problem. The basic equa-
tions (7), (8), and (9) remain the same but the boundary
conditions are changed: For Z— o, B(Z) has both in-
cident and reflected components, whereas p and E, have
only outgoing components. The appropriate solution of
(7) is then

E.=e,[Gi(¢—n?)+iAi(¢—n?)], (20)

with e, = —7bB(0). Since no solution of the homogene-
ous form of (8) satisfies the boundary conditions, there is
no po term, i.e., (11) is replaced by p=a ~'dE./d¢. The
appropriate solution of (9) can then be written as

B(Z)=B\(Z)+B(Z), @n

where B is the same as (12). The integration by parts
proceeds as in the inverse problem, giving, to lowest
order, B(0)=in’qTB(0) and hence B(0)=Ai'(q)
x[1 —iz’qT1 ™', For the electromagnetic channel, the
ratio of outgoing and incident amplitudes in (21) for
Z— o is

R=—1+27%qlAi"(@)1*[1 —in2qr] ™", (22)

and it is easy to show that |1§|2=|R|2; i.e., the
reflection coefficients for the direct and inverse problem
are the same. Furthermore, | 7| 2, defined as the ratio of
outgoing electrostatic energy flux, computed from (20)
for large ¢, to the incident electromagnetic energy flux,
computed from (21) for large Z, is just equal to | n]|? to
lowest order in B, again consistent with energy conserva-
tion. So far as the electromagnetic channel is concerned,
the mode conversion appears as an ‘“‘absorption” of the
incident energy, so |7j|? is often called the absorption
coefficient. The symmetry between the direct and in-
verse problems is consistent with the demonstration of
Means et al.,’ based on time-reversal symmetry argu-
ments.

The absorption curve, i.e., | 7|2 vs g as given by (19),
is presented in Fig. 1, together with the results obtained
by previous authors. There is good agreement with the
numerical solutions of Forslund er al.® The results of
Pert® and Bafios and Kelly® are not shown, since they
agree with those of Ref. 6. Piliya’s® results, which he
obtained from an analytic formula, differ significantly
from all of these for reasons explained by Pert® and
Kamp and Weenink.'® The results of Ref. 6 shown in
Fig. 1, which are for $2=0.015, the smallest value cited
in that work, differ by an amount of order ﬂ2/3 from our
curve for g > 0.08. This is to be expected: We have con-
sistently assumed B2<1, dropping terms of order 823,
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FIG. 1. Mode-conversion coefficient | 7|2 as a function of
g ="(koL)**sin?© as given by (19) (solid curve). Also shown
are the results of the numerical solution by Forslund et al.
(Ref. 6) (---), Piliya’s (Ref. 3 ) analytic result (----), and the
asymptotic approximation of Speziale and Catto (Ref. 7)
(—-—-).

and the curves of Ref. 6 show a sensitivity to 8% above
q =0.6.

In summary, we have derived analytic, closed-form ex-
pressions, (16) and (19), for the reflection and mode-
conversion coefficients for both the direct and inverse
problems. These satisfy energy conservation and agree,
to order [32/3, with earlier numerical calculations of these
quantities.
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