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Effect of Anisotropy on the Ion-Temperature-Gradient Instability

O. Mathey and A. K. Sen

Department of Applied Physics and Nuclear Engineering, Columbia University, New York, New York l0027
(Received 21 July 1988)

It is shown that anisotropy in gradient has a substantial eA'ect on the ion-temperature-gradient —driven

mode. A gradient in the parallel temperature is needed for an instability to occur, and a gradient in the
perpendicular temperature can either enhance or diminish the instability. The latter may be the basis
for a stabilization scheme for this mode in tokamaks via strong and appropriate ion-cyclotron-resonance
heating. The physical reason for this important role difI'erence is also presented.

PACS numbers: 52.35.Qz, 52.25.Dg, 52.35.Fp, 52.35.Kt

Recent theoretical work ' on the temperature-
gradient-driven instability ' has indicated that this
mode may be responsible for anomalous ion energy
transport across the field lines, making the understanding
of the mode all the more crucial to controlled fusion de-
vices. Some experimental evidence of this instability in

the TEXT tokamak has also been reported. However,
so far no difference has been discussed between the
respective roles of the gradients in parallel and perpen-
dicular ion temperatures T;~~ and T;&. We show that the
roles of g;Il=dlnT;II/dlnnp and g;~=dlnT;&/dlnnp are
profoundly diff'erent, where no is the density. Because
the ions are strongly ion-cyclotron-resonance heated in
some machines of interest, perpendicular ion tempera-
tures will typically be far greater than the parallel ones
and the corresponding gradients can be quite diA'erent.
We will consider a shearl ss slab geometry at low P
which allows us to write the magnetic field as B

fp(v~, vll, x+ v&/0) =np[l + ( —e+ 8&mv ~/2ktt T~+

=Bpz =const. Temperature and density gradients are in
the x direction. We consider a local analysis at the point
of maximum density gradient and write the perturbed
potential p as p

= tltexp(ik ~y+ik IIz
—i tot ), with

k~ =m/r„, where m is the azimuthal mode number and
r„ is the plasma size.

Dispersion relation Since .—the mode frequency
co k )~

U $h;, with U&h; the parallel ion thermal velocity, the
electrons will respond adiabatically,

n, =n petit/T, ,

and the ion density response is determined by the method
of characteristics. We shall consider a local analysis
and assume the mode to be located at the point of max-
imum gradient and ignore any x dependence. As a
zeroth-order distribution function, we will choose the
standard Maxwellian solution to the Vlasov equation
representing a plasma with finite density and tempera-
ture gradients, namely

+llmv II /2k8 TII ) (x +vy/0 ) ]

x [m/2trTII] ' [m/2trT~]exp[ —
mv II /2ktt Tll —mv ~/2ktt T~], (1)

where x is measured from the point of maximum gradient and Sll = Trl/T, B~ =—T&/T at the point of maximum gradient.
is the cyclotron frequency. We shall write L, =n/n' at —the point of maximum gradient, and e is such thatL„'= —e+ 8&+ 8II/2. Poisson's equation will then lead to

1+ r~+Sp(rll r~)+k~kD+Sprll(Z(g)+(*Sp[Z(g)+g;lip+gill(g 2 )Z(g) gtgbGZ(()] =0. (2)

In the above equation g=(;—= /ktoy;ll,vtr&—= T,/T&, rll=T, /T II, b =—k&p;, where p; is the ion Larmor radius, Sp
—=e Ip(b), G= 1 II (b)/Ip(b), wh—ere the I's are the usual modified Bessel functions, XD is the electron Debye length,
(*=co,*/kllv, h;, where co,* is the electron diamagnetic frequency, and Z is the plasma dispersion function. We will also
write g„as the real part of g, and co, as the real part of the frequency to.

Marginal stability analysis. —We now determine the values of g;II and g;& that are such that y=Im(co) =0. If co is
real, the factor multiplying Z(() is real and must be zero since Z(g) is complex for a real argument. This leads to the
condition

gill( ( + ~II(+ ( (I gi il!2 gi J bG) (3)
The dispersion relation then becomes

Spgi II+ I + ~J +SO(rll r J ) + kJ kD (4)
From Eqs. (3) and (4), an instability will arise for a given g;II when

gi L + [[I+ r J +So(rll rj) +k J kD] /( So gllbG] [[I+ r~ + SO(ill —r~ ) +k ~ED]/g* SpgllbG] + (1 ——,
'

gjlf )/bG

(5)
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Conversely, for a given r!;&, an instability will arise when

2 2 2 &/2

t);II & 1 —r!;~bG+ (1 —t7;~bG) +2[1+ran+So( rll rJ )+k~kD] j[1+rJ +So(rll rg)+k ~ED] —Sp]/g* SII . (6)
4

It is clear from Eq. (5) that y=0 is impossible when t);II =0, but this is quite possible even when r!;~ =0 according to
Eq. (6). Moreover, in the limit g„»1, y«co„, we obtain (rii =1)

(„=So(*(I bGt); ~ )/[ I + r~ ( I Sp) +k ~AD ],
y/kiiv, h; =rr'/ g„exp( —g„)[g„/g*+ I bG—r!;& —

2~ r!;II+rl;ii(, 1/(bGt!;& —1) .

(7)

(8)

When r!;II =0, Eq. (8) always yields y&0. Consequent-
ly, when g;~~ =0 an instability is ruled out for all g;&,
since an infinite r!;~ would be required to reverse the sign
of y, as per Eq. (5).

Typical results are depicted in Fig. 1 for kill.„=0.1.
Instead of the customary marginal stability (y=0) dia-
gram, we plot g;~~ vs g;& for a low growth rate of
7/(kiivih;) =0.07 (y/co„= 0.03), which may be closer to
a more meaningful threshold for experimental observa-
tion of the instability. One can see that for a typical
mode, say 6= 1, increasing r!;~ from 0 will be at first
very destabilizing, and then very stabilizing. The other
two curves in Fig. 1 show the minimum g;~~ for all possi-
ble b's for two sets of values for the temperature ratios r~~

and r&. It is noted that r!;II reaches a minimum for some

g;& in both cases, after which an increase in g;& will ac-
tually be stabilizing for all modes. We also note the sta-
bilizing affect of lower temperature ratios rI and z&.

In Fig. 2, we show the result for the case of a flat den-
sity profile (L„~ee). We again note the similar
features of a minimum value for 6~~ for some 6'&, for a
given k ~~, and the stabilizing affect of increasing 6&
beyond that value for all modes, as well as that due to
lower temperature ratios. The stabilizing role of tl;~ and

3.50—

I

6& depicted in Figs. 1 and 2, respectively, may be ex-
ploited to stabilize the instability in a tokamak via strong
ion-cyclotron-resonance heating with appropriate heating
profile. We will now proceed to explain the physical
mechanism of the instability and the diff'erent roles of
g;~ and g;)(.

Physics of the mode, r!;& Ii
=0.—When no ion temper-

ature gradient is present, Eqs. (7) and (8) yield a stable,
electron-drift mode. The physical reason for stability is
explained via Fig. 3. Since g, =co/kiiUIh, «1 and g; = 1,
we are far away from electron resonance but close to ion
resonance. In region 3(a), the resonant ions are moved
by the Ex B drift from a zone of high density into the
midplane, whereas in 3(b), ions are moved from a zone
of low density into the same midplane. Ions are ac-
celerated in 3(a) and decelerated in 3(b). But since the
density at the midplane is higher in 3(a) than in 3(b),
the result is a net energy drain from the wave resulting
in its damping. This density difference is 4X:Bfo/r)x.
This is a configuration-space-induced phenomenon.

In this regime, ion waves are well known to be strongly
damped, and our numerical results verify this fact.
Density-gradient effects are more than compensated for
by Landau damping. We will shortly review the physical
reason for this stabilization.
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FIG. l. Experimentally meaningful (small y/kiiUIhj=0. 07)
marginal stability diagram in g;~~-g;& plane for k~~L„=0.1. The
first curve shown is for b =1, zi—= T,/T;I =r& ——T,/T;4 =1. The
region above the curve is experimentally unstable and that
below is stable. The second curve is for z~~

= 2, z~= 4 . The
region above it is experimentally unstable for some b and that
below is stable for all b. The third curve is for z~~=z~ =1.
Again, the region below the curve is stable for all b, and that
above is unstable for some b.
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FIG. 2. Experimentally meaningful (small y/kiiUI» = 0.07)
marginal stability diagram in 6'l~-6& plane for a Aat density
profile (L„~). Sii and 8& are the inverse ion-temperature-
gradient scale lengths of T;~~ and T;~. The region above a par-
ticular curve is experimentally unstable for some b and that
below is stable for all b. The curves shown are for

1 1

rII = T,/Tjij r& = T,/T;& =1 and rii = —, , r J 4 .
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F'IG. 3. The physics of the mode.

Physics of rhe mode, ri;ii ~%0.—When q;, i ~e0, the
electron wave will be further damped by the x-space
mechanism described above, since the net eA'ect of the
temperature gradient will be to increase Bfo/Bx as a re-
sult of the additional gradient in temperature and hence
the density diA'erence between zones 3(a) and 3(b).

In regard to the ion wave, as g; increases, parallel
compression of the plasma will be more and more
coupled to perpendicular motion through ion pressure
changes in Exa motion, resulting in the excitation of
the ion waves that were originally Landau damped.

These ion waves have a real frequency of the opposite
sign of that of the electron wave, and therefore have an

opposite direction of ExB motion since 6xExB ~F/Bcu.
The ions in Fig. 3(a) now do work against the wave,
while ions in 3(b) gain energy from the wave, in strict
analogy to the role of the electrons in the collisionless
drift instability. But since region 3(a) has more parti-
cles, and since ufo/dx is steeper than with only a density
gradient present, there is now enough net energy into the
wave to overcome Landau damping and produce an in-
stability for adequate values of q; and g.

A rough estimate of y can be arrived at easily. The
resonant ions will have uii = co„/kii, and their displace-
ment along the x axis is &$x =[cE&(b)/B]r. We note
that the Ex8 eAect depends strongly on the finite-
Larmor-radius eA'ect, and therefore we write E(b). It
actually turns out that E (b) =E~So(b). The number
of such ions per unit volume is fo(u ii

= caulk i»

x, T(x))8uii, where oui~i is the velocity spread near reso-
nance. One may estimate that the ions remain resonant
within half a wavelength of the peak, so that
r Au ii

= kii/2 =x/k ii. The excess resonant ion density
[Fig. 3(a)-Fig. 3(b)] is then

8n„„=—Bx (d/Bx)fr/( Jkii, x, T(x) )~uii .

From the definition of fo in Eq. (1) we obtain

rif0/Bx =np[ 8+ ~emu &/2ka T&+ ~llmull /2ka Tll]

x [m/2zTii]' '[m/2zT~]exp[ —muii/2kaTii —mu~/2kaT~].

We may take mu& = 2kaT~, and write e= L„'+c$&+8ii/2—. We also have uii = cu„/kii. bn„„will then become

6n [nocE ~SO(b)K/Bk II] [L + ~ll (mcu,'/2kak
II Tll 2 ) ]

x [ /m2ztT ] ii[m/2+Ti]exp[ muii/2kaTii mu /2kaT ] .

It appears from the above equation that q;& will not contribute directly to the resonant density, and hence to the power
supplied by the particles to the wave. However, g;& will contribute indirectly through its efI'ect on the real frequency
cu„, as according to Eq. (7), cu, ~ q;~ for su%ciently large q;~.

The net power delivered to the wave will be the balance of power input into the wave and Landau power loss. The
net power delivered to the wave is Po„, =eEii 6n«, co„/kii, which can be written with the help of Eq. (10) as

Pop, = —[noecEiiE So(b)xcu, /Bki ] [L '+alii(mcu„/2kakit Tii ——,
' )]

x [m/2nTii] 'i'[m/2nTi]exp [ mu i2i/2—ka Tii mu ~/2ka T~] . —

The power loss by Landau damping is ( —co, & y)

P[ n (ecxE i/ 6)„/mkii ) (Bfo/Bu ii )

c (eE II rur ) f0/k II
T il ~

We infer from Eqs. (11) and (12) that

P&, /PLD = Solt(co /co„), g ((1,

Pq;/PLD 2k ' rurSO(b) &~ll/k il +i &

(12)

These results can be used to elucidate the diAerent
roles of g;~[ and q;&. With no g;~] present, the only term
doing work into the wave in Eq. (11) is the L„' term.

But since m„~co*, increasing L„' will not change the
ratio P„,/PLo appreciably in Eq. (13). If, on the other
hand, we strongly increase g;&, m, will increase accord-
ing to Eq. (7), which actually favors Landau damping.
Increasing q;& further with q;ii='0 will make ~g„~ &&1

and result in the depletion of resonant particles and sta-
bilization of the mode. Interestingly, raising g;& for a
given g;~~ will be destabilizing insofar as one moves closer
to resonance as co„ increases. Increasing g;& beyond the
resonance zone results in a spectacular crash of the
growth rate to noise levels for all reasonable g;~~ values,
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whereas our results indicate that this is the case at high

g;& only. g;& can be very destabilizing indeed below res-
onance as Fig. 4 indicates. There also appears to be an
ambiguity between the roles of anisotropic temperature
(whose role is minor) and anisotropic temperature gra-
dient (whose role is critical).
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FIG. 4. The value of y/k~~vtq; for diA'erent ti;~ as a function
of g;~~. The parameters are k~~L„=0.1, b =1. ~~~ =~~ =1.

as Fig. 4 indicates, which depicts the growth rates
y/kii«g& vs tl;~~. With our parameters, b=l, r~~=r&=l,
and k~~L„=0.1, the instability is strongest for TI;& =3,
and it is completely stabilized at g;& =5, for all g;~~'s & 4.

After completion of the present work, it was brought
to our attention that an independent study of the same
topic was being submitted for publication. As in the
present study, the author finds that g;~~ is critical for in-
stability. He also concludes that q;& is stabilizing,
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