Akutsu, Akutsu, and Yamamoto Reply: In the preceding Comment,¹ Saam gives another derivation of the universal Gaussian curvature jump (UGCJ) of the equilibrium crystal shape (ECS).² His argument is correct and is important because, combined with ours, it leads to a deeper understanding of the UGCJ and associated fluctuation properties of vicinal surface. His approach relies on the correct capillary-wave description^{3,4} of the rough surface which requires a relationship between interface stiffness, ECS curvature, and height-height correlation function. To give further support for this approach, we investigated the squared interface width^{4,5} which is also related to the Gaussian curvature K. The capillary-wave Hamiltonian for an $L \times L$ -sized system is written as

$$H = \frac{1}{2} \int \int dx^2 \sum_{ij} f^{ij} \frac{\partial z}{\partial x^i} \frac{\partial z}{\partial x^j}, \qquad (1)$$

where f^{ij} , i, j = 1, 2 is the stiffness tensor. Denoting the eigenvalues of f^{ij} by f_1 and f_2 , we obtain the following asymptotic expressions for the height-height correlation function $G(x,y) = \langle [z(x,y) - z(0,0)]^2 \rangle$ and the squared interface width $W^2 = \langle [z(0,0) - \langle z(0,0) \rangle]^2 \rangle$:

$$G(x,y) = 4\eta \ln R'(x,y), \ R'(x,y) = \left(\frac{x^2}{f_1} + \frac{y^2}{f_2}\right)^{1/2}; \quad (2)$$

$$W^2 = 2\eta \ln L , \qquad (3)$$

with [see Eq. (4) of Ref. 2]

$$\eta = \frac{1}{4\pi} k_B T \frac{1}{(1+|\mathbf{p}|^2) [\det(f^{ij})]^{1/2}} = \frac{k_B T}{4\pi} \frac{1}{\lambda} \sqrt{K}$$
(4)

where **p** is the surface gradient, and the second equality is Eq. (4) of Ref. 1. Recalling that in Ref. 2, the "universal" free-fermion picture of the coarse-grained vicinal surface is essential, we calculated the left-hand sides of (2) and (3) from the free-fermion Hamiltonian to yield $\eta = 1/4\pi^2$ ($|\mathbf{p}| \rightarrow 0$), in agreement with the sine-Gordon result⁶ cited by Saam. This calculation not only provides a rederivation of UGCJ but also proves the universality of η implicitly assumed in Ref. 1. It also explains the fact that the sine-Gordon model becomes a free-fermion model at the facet edge ($k_c \rightarrow 0$ limit⁶).

Note that $\eta = 1/4\pi^2$ holds for *any* free-fermion system,⁷ irrespective of parameters in the Hamiltonian. At first sight, this is peculiar because, in Ref. 2, the crucial role is played by a relation between the fermion mass and the step stiffness. This relation originates from the one⁸ between the scaled interface width σ and the interface stiffness $\gamma + \gamma''$ in *one dimension*,

$$\sigma(\theta)^{-2} = \beta[\gamma(\theta) + \gamma''(\theta)], \qquad (5)$$

which is the source of the universal relation for the coefficients

$$B(\theta) = \pi^2 (k_B T)^2 / 6[\gamma_s(\theta) + \gamma_s''(0)], \qquad (6)$$

appearing in the vicinal-surface free-energy $f(\mathbf{p}) = f(\mathbf{0}) + \gamma_s(\theta) |\mathbf{p}| + B(\theta) |\mathbf{p}|^3$. Recall that the Gauss-

ian curvature jump ΔK calculated from $f(\mathbf{p})$ involves these coefficients. Hence the requirement that ΔK be universal leads to (6), and *further* to (5). We thus see that different levels of arguments, ours and Saam's, are completely consistent: Fluctuation properties of the one-dimensional interface govern those of the twodimensional interface, and *vice versa*.

To conclude, two derivations of UGCJ, ours and Saam's, look the same from opposite directions. At the center lies the universal free-fermion picture of the vicinal surface. As an important implication drawn from Saam's Comment, we should note that UGCJ can be tested by measuring η by scattering experiments.⁹ We should also note that experimental detection of nonuniversal behavior might allow us to determine the strength of excess interactions, including those discussed by Saam, which cause the nonuniversal behavior.

Y. Akutsu

Institute of Physics Kanagawa University Rokkakubashi, Kanagawa-ku, Yokohama 221, Japan

N. Akutsu

Department of Physics, Faculty of Engineering Yokohama National University Tokiwadai, Hodogaya-ku, Yokohama 240, Japan

T. Yamamoto

College of Technology Gunma University Kiryu, Gunma 376, Japan

Received 12 April 1989

PACS numbers: 61.50.Jr, 05.70.Jk, 68.35.Rh, 82.65.Dp

¹W. F. Saam, Phys. Rev. Lett. **62**, 2636 (1989).

 2 Y. Akutsu, N. Akutsu, and T. Yamamoto, Phys. Rev. Lett. 61, 424 (1988).

³F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. **15**, 621 (1965); J. D. Weeks, J. Chem. Phys. **67**, 3106 (1977).

⁴N. Akutsu and Y. Akutsu, J. Phys. Soc. Jpn. **56**, 1443 (1987).

⁵R. H. Swendsen, Phys. Rev. B 25, 2019 (1982).

⁶H. J. Schulz, Phys. Rev. B 22, 5274 (1980).

⁷J. Villain, in Ordering in Strongly Fluctuating Condensed Matter Systems, edited by T. Riste (Plenum, New York, 1980), p. 221; T. Yamamoto and I. Izuyama, J. Phys. Soc. Jpn. 55, 4194 (1986).

⁸M. P. A. Fisher, D. S. Fisher, and J. D. Weeks, Phys. Rev. Lett. **48**, 368 (1982); Y. Akutsu and N. Akutsu, J. Phys. A **19**, 2813 (1986); J. De Coninck and J. Ruiz, J. Phys. A **21**, L147 (1988); D. B. Abraham and P. J. Upton, Phys. Rev. B **37**, 3835 (1988).

⁹M. den Nijs, E. K. Riedel, E. H. Conrad, and T. Engel, Phys. Rev. Lett. **55**, 1689 (1985); **57**, 1279 (1986); G. A. Held, J. L. Jordan-Sweet, P. M. Horn A. Mak, and R. J. Birgeneau, Phys. Rev. Lett. **59**, 2075 (1987).