
VOLUME 62, NUMBER 22 PHYSICAL REVIEW LETTERS

Properties of Earthquakes Generated by Fault Dynamics

29 MAY 1989

J. M. Carlson and J. S. Langer
Institute for Theoretical Physics, University of California, Santa Barbara, California 93I06

(Received 6 March 1989)

We present a model for fault dynamics consisting of a uniform chain of blocks and springs pulled
slowly across a rough surface. The only nonlinear element of our model is a slip-stick friction force be-
tween the blocks and the surface. We find that this model gives rise to events of all sizes. Our numerical
evaluation of the distribution of earthquake magnitudes results in a power-law spectrum similar to what
is observed in nature. Like certain other dissipative dynamical systems, the observed large Auctuations
in earthquake magnitude persist because the system is in a state of marginal stability.

PACS numbers: 91.30.Px, 05.40.+j, 05.45.+b

Systems which have no intrinsic time scales or length
scales have been the subject of much investigation in re-
cent years. While extensive work has been done to
characterize certain features of these kinds of systems,
until recently there has been little success at providing
detailed mechanisms for their evolution. In a series of
papers Bak, Tang, and Wiesenfeld' and, later, Kadanoff,
Nagel, Wu, and Zhou studied various cellular automa-
ta, loosely referred to as "sandpiles. " In these models,
sand is dropped slowly, one grain at a time, onto random
positions on a lattice. Numerically they found that, for
many different rules of evolution of the pile, the distribu-
tion of avalanche sizes displays a power-law spectrum
and that, at any given time, the configuration of sand on
the pile has a fractal geometry. Bak, Tang, and Wiesen-
feld concluded that the observed large Auctuations in

avalanche size and the spatial self-similarity result from
the fact that the attractor of the dynamics is marginally
stable; in essence the system is perpetually in a critical
state. They introduced the term self organized c-riticali

ty to describe this behavior.
To the best of our knowledge, the model for earth-

quakes that we shall describe here is the first demon-
strated example of self-organized criticality in a deter-
ministic continuum dynamical system. This model has
two main advantages compared to the cellular automata.
First, because we are working with a system of
differential equations, certain analytic results can be ob-
tained. Second, there is no explicit randomness in the
model; instead, the system evolves deterministically from
irregular initial conditions.

The system is illustrated schematically in Fig. 1(a).
Several variations of this model were studied previously
both numerically and experimentally by Burridge and
Knopoff. The model consists of N blocks of equal mass
m located at positions X~(t) along the x axis, which we
imagine to be the axis of a lateral fault. Each block is
connected to its two neighbors by harmonic springs of
strength k, . and, when there are no additional forces on
the system, the equilibrium spacing between blocks is a.
The blocks are pulled individually forward through elas-

tic couplings (leaf springs or torsion elements) of
strength k~, which move at constant loading velocity v.

This loading mechanism corresponds to slow steady de-
formation far away from the point of contact of two tec-
tonic plates whose linear elastic properties are described
by the spring constants k, and k~. Finally, each block is
subject to a friction force F(A') which depends only on
the velocity of the block. The important nonlinearities in
the problem are contained in the function F(X) illustrat-
ed in Fig. 1(b).

The equations of motion for this system are

mA~ =k, (A'I+) —2A)+2'I —))
—k (A'I —Ut) —F(KJ) .

The rest of this Letter will be devoted to describing some
solutions of these equations. Note that, unlike many
traditional earthquake models, Eq. (1) contains no ex-
plicit spatial inhomogeneity or memory effects. In-
stead we will show how the dynamics alone is sufhcient
to generate a wide spectrum of events.

A trivial solution to Eq. (1) is given by uniform
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FIG. 1. (a) Block and spring system and (b) friction force
F(X). For the numerical results given in Figs. 3 and 4 the pa-
rameters take the values m= 1, k, =2500, k~ =40, a=1, and
i =0.01. For the friction force we use F(X) =Fol(1+X) for
X) 0 with Fp=50.
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motion at the pulling velocity:

A; =vt — F(v) .
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FIG. 2. periodic solutions: velocity A' and (inset) position X
vs time t when the system is spatially homogeneoUs. The slip-

ping time is rs =2'(m/k~) '~, and the loading time is

rL =2Fp/kpv.

When the friction law is of the form illustrated in Fig.
1(b), this solution is unstable for all vAO. A straightfor-
ward linear stability analysis of this solution reveals that
all Fourier modes grow exponentially. (The growth rate
remains finite at all wave numbers. ) A sufficient condi-
tion for the instability is F'(v) &0. In other words, be-
cause the friction decreases as the velocity increases, the
system is unstable to both uniform and spatially varying
perturbations in the positions of the masses.

Equation (1) also has periodic solutions which arise,
for example, when the initial conditions are spatially
homogeneous. In that case, translational symmetry is
preserved, and the system alternately sticks (until it at-
tains the maximum static friction) and slips (until the
pulling springs are sufficiently compressed to stop the
motion) in unison, as if it were a single block (see Fig.
2). Similarly, periodic solutions can take the form of
kinks propagating at some speed v: A~(t) =X(t +'j a/v).

As in the case of uniform motion, a straightforward
linear stability analysis reveals that periodic solutions are
unstable to spatial variations. Again this instability
arises because F'(X) &0 while slipping. An important
consequence of this analysis is that whenever a cluster of
blocks slips together, any spatial inhomogeneity is
amplified. It is this feature which leads to the interesting
behavior.

Next we consider more complex situations in which

the system exhibits slipping events of all sizes. The fol-
lowing schematic description of the evolution of the sys-
tem illustrates how the dynamics generates a wide range
of events. Clusters of blocks which slip together do so
because they happen to be in a relatively homogeneous
local configuration while they are struck, and thus reach
the threshold for slipping at approximately the same
time. During a small slipping event, when only one block
slips between two neighbors which remain stuck, the
event smooths the system on the scale of three blocks
(because strain cannot be released beyond the blocks
that remain stuck) making a three-block slipping event
more likely later at that location. On the other hand,
there are two consequences of those events which involve
a group of blocks slipping together between two blocks
which remain stuck. First, like the single-block event,
the large event smooths the system on a larger scale pre-
paring it for subsequent larger events. Second, due to
the instability associated with the friction function, any
spatial inhomogeneities in the group of slipping blocks
will be amplified while they are sliding. Thus, smaller
events are generated persistently.

We solved (1) numerically for various different
choices of the parameters, and system sizes up to 200
blocks. We considered boundary conditions in which
there is zero force at the boundary (the system simply
ends), and boundary conditions which damp the force at
contact. Both yield similar results. ' Generally, we
started the system in a fully stuck configuration with a
small spatial inhomogeneity. Before we began compiling
statistics, we allowed the system to evolve for approxi-
mately ten loading periods rL =2Fo/vk~, which is the
maximum time it takes for the pulling strings to be
stretched far enough to exceed the maximum static fric-
tion. After the system reached what appeared to be a
statistically steady state, we observed a wide range of
events, some of which are illustrated in Fig. 3 in the form
of graphs of the velocity A~ as a function of position j
and time t The small.est events shown in Fig. 3(a) are
small periodic motions involving only one block. These
creep events never attain the pulling velocity and act to
smooth the system on larger scales. Larger events, also
shown in Fig. 3(a) are not periodic, and the blocks that
participate in these catastrophic events attain velocities
comparable to those shown in Fig. 2 for a uniform slip-
ping event. Occasionally, with an average frequency
roughly of order zL ', we see truly great earthquakes
such as that shown in Fig. 3(b). In this example a local-
ized event triggers a shock front which propagates all the
way to the boundary at approximately the sound speed
a(k, /m) '/'

Analytically, we can characterize the two types of
events —creep and catastrophic —by considering a
simplified version of the model. We consider a group of
n blocks in a spatially homogeneous configuration local-
ly, and assume that this group of blocks slips as a whole
between blocks on either side which happen to be stuck.
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sufficiently smooth for an event of size n to occur. Equa-
tion (3) allows us to determine analytically the approxi-
mate amplitude and shape of an event of size n. Howev-
er, in the original system [Eq. (I)], the blocks are left in

a scrambled state after a slipping event, and smaller or
larger events will follow.

During the small creep events, the slipping blocks at-
tain only very small velocities, and thus to a good ap-
proximation we can linearize F(X'): F(X) =Fp—F'(0)X. In this approximation (3) becomes the equa-
tion of motion for an antidamped harmonic oscillator
with a slowly increasing bias force. Letting X(t)—e",
we find that the solution oscillates (a is complex) when

(b)
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FIG. 3. Complex solutions: velocity X,- vs position j and
time t The smallest . features in (a) are periodic creep events
which involve only one block. The larger features are catas-
trophic events which involve a larger number of blocks. The
great event illustrated in (b) involves all of the blocks and
essentially resets the system.

The equation of motion for the slipping blocks is given

by

nmX = —2k,X—nk~(X —vt ) —nF(X), (3)
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where X describes the coherent motion of the n blocks,
and we have absorbed an unimportant constant on the
right-hand side (which is determined by the positions of
the two blocks which remain fixed) into our definition of

Observe that all forces, except those due to the two
springs which connect the slipping blocks to the rest of
the system, act equally on all the slipping blocks and are
thus preceded by a factor of n. In the limit of large n,
(3) reduces to the equation for periodic events involving
the whole system discussed previously. The important
feature of the model which has been left out of Eq. (3) is
the amplification of spatial irregularities while blocks
slip. Our assumption in (3) is that the system is locally

This condition can be satisfied, for example, when k, is

large and n is sufficiently small. In the limit that
F'(0) =0 and k~ &&k„" the velocity X simply oscillates
sinusoidally between zero and nk~v/k, Wh.en
F'(0) & 0, the antidamping results in a residual force on
the blocks when they restick. Because the maximum ve-

locity of these small-amplitude events is less than the
loading speed v, these events never release much of the
strain accumulated in the pulling spring.

When the condition given in Eq. (4) is violated, the
solution of (3) in the linearized regime grows exponen-
tially with time (a is real). Eventually the group of
blocks attains a velocity for which F(X) is small. The
large catastrophic events exhibit this type of behavior.
We can obtain an approximate solution for X(t) during
a large event by letting F(X)=0 while the blocks are
slipping. In this approximation and in the limit of slow
pulling velocities, while the blocks slip (3) has a solution
of the form

Fo
X(r) =—,cos(rot),

co m

where co =k~/m+2k, /nm, and the coefficient Fp/ro m
is determined by the initial conditions X(0) =0 and
—ro~X(0) =Fp/m, which specifies that the spring forces
balance the threshold static friction. A more careful
analysis including the linear approximation to F(X) for
small velocities produces similar results. In either case,
unlike the small-amplitude creep events, during a large
event the blocks always attain a velocity greater than the
loading speed. When the blocks eventually stop slipping
there is a residual force which compresses the pulling
springs, resulting in a relatively long delay before these
blocks are involved in another slip event.

Finally, from our numerical results we have calculated
the distribution of earthquake magnitudes. The magni-
tude At is defined to be the natural logarithm of the
earthquake moment Mo, which for our model can be tak-
en to be

Mp =Cg t A'~ dt,
j~ ~ event
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viscosity regions incorporated into this model can gen-
erate sequences of aftershocks in qualitatively good
agreement with what is observed. In this paper we have
shown that the dynamics alone is sufficient to generate a
wide range of events. Somewhat alarmingly, our results
suggest that small events lead to smoothing on a larger
scale, resulting in larger events later on. Currently we
are analyzing our results in more detail to determine the
correlations between large events.
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FIG. 4. Distribution of earthquake magnitudes JV(At). For
this result the number of blocks is N=200 and the constant C
in Eq. (6) is 10 e.

where C is a constant. The distribution JV(At) produced
by our numerical results is illustrated in Fig. 4, and is in

strikingly good agreement with what has been observed
for real earthquakes: ' InÃ(At) =A BAt, whe—re 2 is a
constant and B= 1. Even the obvious discrepancy—the frequency of great events is too large —may be
consistent with observations. We tentatively attribute
the latter phenomenon to the fact that both our comput-
er model and real earthquake faults necessarily have
finite lengths.

The observed large Auctuations in the magnitudes of
earthquakes in nature suggest that certain dynamical
models of faults may be ideal candidates for the study of
general features of self-organized criticality. Many fault
models incorporate an intrinsic spatial variation which is
important for certain features of earthquakes. For ex-
ample, Burridge and KnopoA showed that local high-
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