
VOLUME 62, NUMBER 22 PHYSICAL REVIEW LETTERS 29 MAY 1989

Electronic Properties of High-T, Superconductors

C. A. Balseiro ' and M. Avignon

Laboratoire d'Etudes des Proprietes Electroniques des Soides, Centre iVational de la Recherche Scientijique,
BP 166, 38042 Grenoble CEDEX, France

A. G. Rojo and B. Alascio
Centro Atomico Bariloche, 8400 Bariloche, RI'o Negro, Argentina

(Received 13 October 1988)

We study a generalized Hubbard Hamiltonian which includes the Cu and 0 orbitals in the Cu02
planes of high-T, superconductors. We use the slave-boson technique to account for the intra- and in-

teratomic correlations. In the saddle-point approximation we obtain the metal-insulator phase diagram
and conclude that for one hole per unit cell in the Cu02 plane, La2Cu04 is a charge-transfer insulator.
Our results show that doping produces a rapid metallization of the system and destroys antiferromagnet-
ic order. Transport properties and the mechanism for superconductivity are briefly discussed.

PACS numbers: 74.65.+n, 74.20.—z, 75. 10.Jm

In what concerns the electronic properties of high-T,
superconductors it is accepted that the carriers which

play the dominant role for the superconductivity are
mainly localized in the Cu02 planes of these materials.
There is also growing experimental evidence which indi-
cates that electronic correlations are large, at least in the
Cu sites. ' Also, spectroscopic experiments show that
holes added over the stoichiometric compound go mainly
to the 0 sites. For these reasons the conventional band-
structure calculations are not adequate for an under-
standing of the electronic properties of these systems. In
particular, they fail in describing the insulating nature of
La2Cu04.

In searching for a theory of high-T, superconductivity
it is essential to have a good and, if possible, simple
description of the reference normal state. Although
some attempts have been made to treat the correlation
eff'ects in a proper way, they restrict to a range of param-
eters which do not always correspond to what is now ac-
cepted for high-T, materials.

In this Letter we consider a tight-binding Hamiltonian
which includes Cu 3d and 0 2p orbitals together with
intra- and interatomic correlations. We show that the
slave-boson technique in the saddle-point approximation
provides the desired description with no restrictions in

the parameter range. We derive and generalize the
Zaanen, Sawatzky, and Allen (ZSA) phase diagram.
Our results are therefore not only applicable to high-T,
materials but are extendible to other transition-metal
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Equations (2a) and (2b) are the completeness relation
and the charge-conservation condition, respectively. In
the combined fermion-boson Hilbert space the Hamil-
tonian reads

compounds. The Hamiltonian under consideration is

H=ge;n; + g t;~c;~~ +g. U;n;tn;1+Vgn;n~
l 0' (ij )o I (ij )

where the index i runs over the sites of Cu02 two-
dimensional lattice in which every 0 atom lies between
two Cu atoms. The operator c; creates a hole with spin
o at the Cu 3d, 2 y2 (0 2p„,2p~) orbital with i labeling
a Cu (0) site. The corresponding parameters e; =e~, ed
and U; =U~, Ud are the orbital energies and intra-atomic
repulsions, respectively, while t;~ is the hopping matrix
element and V is the interatomic Coulomb repulsion. In
Eq. (1), the symbol (ij ) means that the sum is performed
only over nearest neighbors.

We extend to the present case the slave-boson treat-
ment of Ref. 9 in which a single-band Hubbard model
was considered. For the purpose we introduce four bo-
son fields per site associated with each occupation state
of the p or d orbitals, namely e;, s; (ct= t J), and d;. If
the boson number operators (e e, s s, etc. ) are viewed as
projection operators on diA'erent occupation states, the
following conditions have to be imposed:

H= g tZ~~& Z) +gk; c~; +g(e; —X; )(s; s; +d; d;)+QUd; d;

+V+(s, s; +d; d;)(sl s, +d~d, )++X e; e;+ps; s; +d; d; —1, (3)

where X; and k are Lagrange multipliers introduced to satisfy the constraints of Eq. (2) and Z; is given by'

In the physical subspace defined by Eqs. (2) the Hamiltonian (3) has the same matrix elements as those calculated
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for (1) in the original Hilbert space. We evaluate the partition function in the saddle-point approximation (SPA), in

which all Bose fields are taken as numbers independent of time. In the paramagnetic state the Lagrange multipliers (X)
and the boson-field mean values are independent of the cell position and spin. In the SPA the free energy per cell for
the paramagnetic phase can be written as

f= —ksT gln[l+e ~(e,k
—p)]+Uddd+2U~dp+4VQ(s~ +dp)(sd +dd)

ak o. tTQ'

+g [(Ed kd ) (Sj~ + dd ) + 2(e~ —
X~ ) (S~~ + d~ ) 1

+2k~ e~+gs~ +dp —1 +2d ed+lsd +dd —1 (5)

where e,k is the one-electron energy corresponding to
band a and wave vector k. The bonding and antibonding
bands (a =1,2) are given by

~., =-,' (7.,+)d)+( —I) E(g)

with

(6a)

E(g) =[—,
'

(X~ —kd) +4q t [1+ —,
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In Eqs. (6), g(k) =cos(k„a)+cos(k~a), and q =(Z; ZJ).
The third band is a dispersionless nonbonding band with

63k Xp. In our calculations the density of the g's, p(g),
is taken as a constant for ~g~ (2. The free energy f
must be minimized with respect to the variables d;, s;
=s;, e;, and k; (i =p, d). At T=O, for the case of one
hole per unit cell, we find either a semiconducting phase
characterized by q =0 or a metallic phase with q&0. In
Fig. 1 we show the phase diagram obtained in (Ud, d, )
space, where h=(e~ —ed+2V)/2 is the charge-transfer
energy. Note that h, not only depends on the energy dif-
ference between the Cu and 0 orbitals but also includes

the eA'ect of the interatomic repulsion V as suggested by
Varma and Schmitt-Rink. '' This phase diagram resem-
bles the ZSA phase diagram. For large Ud, by increas-
ing 6 one reaches a metal-insulator boundary at 5'= 2t
+2r /Ud. The semiconducting state is of charge-
transfer type. In the large-h, limit, the boundary is at
U)' =St /A. This limit can be viewed as a Mott transi-

!
tion in the narrow bonding band. For t..~ & ed, the phase
boundary is independent of U~. In fact, the metal-
insulator boundary is obtained as the set of parameters
Ud and h, for which there is an infinitesimal charge
transfer Sn (q~ 0); near this boundary the eH'ect of U~
can be neglected since it is of order Bn . This seems to
be a quite general phase diagram, since we obtain very
similar boundaries for diA'erent lattice structures if h, is

replaced by A=(e~ —ed+zV)/2, where z is the oxygen
coordination number of the lattice.

In the semiconducting phase the mass gap is given by

BE BE
Eg

where E is the internal energy and n is the average num-

ber of particles per unit cell. The gaps obtained are
shown in Fig. 2 for diA'erent values of the parameters.
For Ud ~ ee, Es =2(h 4t ) 'i, wh—ich clearly indicates
that in the large-U limit the gap is of charge-transfer
type. On the other hand, for h, & Ud the gap is dominat-
ed by Ud (Mott insulator).

For simplicity, we assume that the eN'ect of doping or
changing the oxygen content in high-T, superconductors
is to modify the number of holes per unit cell but that it

0
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FIG. 1. Metal-insulator phase diagram in the (Ud, h) plane.
The metallic and insulating areas are denoted by M and I, re-
spectively. The region of the parameters corresponding to a
charge-transfer insulator (C.T.I.) and a Mott insulator (M. I.)
are indicated.
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FIG. 2. Mass gap as defined by Eq. (7) as a function of 6
for different values of Ud. The results are independent of Up.
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does not change the microscopic parameters of Hamil-
tonian (1). We calculate the mass renormalization as a
function of doping. The renormalized mass m* is given

by the factor q which in turn renormalizes the hopping
matrix element as m/m* =q E (gF)/E(gF), where m is
the bare mass and E (E ) is the energy defined by Eq.
(6b) at the Fermi level for the interacting (noninteract-
ing) system.

In Fig. 3 we present results for m as a function of
doping B=n —1, n being the number of holes per unit
cell. The results obtained show that in the metallic
phase and far from the metal-insulator boundary, rn*
—m is weakly dependent on doping. In the semicon-
ducting phase the effective mass decreases rapidly with

doping, showing a rapid metallization of the system as
was previously conjectured from exact diagonalization of
small clusters. For a reasonable set of parameters ob-
tained for La2Cu04 ' [t —1.5 eV, Uq —6t, U~ —3t,
(e~ —eq)/2- t, V—1.5tl this system lies in the region of
charge-transfer semiconductors. However, for this set of
parameters the system is close to the metal-insulator
boundary and with a change in the parameters within
physically reasonable limits one could obtain either a
heavy-mass metal or a semiconductor with a gap Eg up
to 2 eV.

Within the same framework we study the antiferro-
magnetic instability. We assume an antiferromagnetic
structure in which there is no magnetization of the 0
atoms and the Cu sublattice is divided in two inter-
penetrated sublattices. By studying the divergence of
staggered susceptibility associated with the proposed
magnetic structure, we obtain the phase diagram of Fig.
4. This phase diagram is restricted to e=(e~ —q)e/2
& 0.5. For e small (or negative), the holes tend to local-
ize on 0 sites and, consequently, the proposed magnetic
structure becomes unstable. For e~ 0.5, the holes are
localized mainly on the Cu and the phase diagram is not
very sensitive to U~. In agreement with experimental re-
sults, we find that systems close to the stoichiometric sit-
uation are antiferromagnetic but a small doping destroys

the magnetic long-range order.
We have looked for the temperature dependence of the

effective mass in stoichiometric samples. To simplify the
calculations we have taken the limit Uy ~. In this
limit the probability of double occupation at Cu sites dz
is zero. Temperature induces charge transfer from Cu to
O. In lowest order in this charge transfer and eliminat-
ing X', the free energy can be written in terms of pp only.
The charge on Cu is then given by

fpye (py)dpi'
8

fe ~f(py )dpi'
where f is the free energy. Using this expression to cal-
culate the effective mass at low temperatures, we obtain
q(T) =yJT.

The obtained temperature dependence of q in the limit
Uq ~ implies that m/m* cx: yT. The prefactor is very
small if the system lies well inside the insulating phase
but increases and becomes large for insulators lying close
to the metal-insulator boundary. Recent experimental
results on Y-Ba-Cu-0 indicate the effective mass of the
carriers are temperature dependent. '

The model Hamiltonian (1) has been extensively stud-
ied in connection with superconductivity induced by
charge-transfer excitations. Varma, Schmitt-Rink, and
Abrahams ' first suggested the importance of the intera-
tomic repulsion V as responsible for the superconductivi-
ty in these compounds. Moreover, numerical simulations
in sma11 clusters show the existence of pairing in the
Cu02 planes. ' In the present approach the nature of
this pairing can be visualized by adding two holes to the
charge-transfer insulator. The added holes, which are
infinitely massive, are bounded for V& e~

—ep. As the
doping increases the mass decreases and if this mecha-
nism is not completely inhibited it could give rise to su-
perconductivity.

Finally, let us mention that for the generalized Hamil-
tonian of Eq. (1) it is not clear how to extend the Gutz-
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FIG. 3. EAective mass as a function of doping. The param-
eters are Uq =6t, U~ =0, e=t, and diferent values of V.

FIG. 4. Magnetic phase diagram in the (e, 6) plane. The
hatched area is antiferromagnetic. The thick line at 6=0 indi-
cates the insulating state. The parameters are Uq =6t, U~ =0,
and V= 1.5t.
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wilier approximation (GA) and diA'erent approaches
have been proposed. ' Our results with the slave-boson
technique are not equivalent to those obtained in these
treatments, although they are qualitatively similar. Us-
ing the GA as defined in Ref. 17 we obtained a phase di-
agram similar to that of Fig. l.

In summary, we presented a slave-boson treatment of
a generalized Hubbard Hamiltonian which models the
electronic structure of Cu02 planes. In our treatment all
on-site interactions are treated on the same footing. The
interatomic repulsion V is considered at a level which
corresponds to a Hartree-type approximation. In the
saddle-point approximation we derive a metal-insulator
phase diagram and study the antiferromagnetic instabili-
ty and the metallization of the system as a function of
doping.

We have shown that for 3, larger than a critical value,
the stoichiometric systems are charge-transfer insulators.
In this phase the Cu-0 planes are highly ionic; however,
a small doping produces a rapid metallization. In agree-
ment with experimental results, systems close to stoi-
chiometry are antiferromagnetic but the long-range anti-
ferromagnetic order is rapidly destroyed by doping.

The approach presented here provides a natural
framework for the study of high-T, superconductivity.
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