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We report extensive Monte Carlo simulations and finite-size scaling analysis of the correlation length
(gt) for the spin-spin correlation function and the renormalized coupling (gL) of the simple-cubic Ising
model with a wide range of lattice sizes (L ~ 96). New methods of analysis which avoid assumptions re-
lated to the correlation length were intl'oduced. The exponents v and 2 —e were estimated from separate
analysis of (c and gc, respectively. A value of cu =0.001 ~0.07 for the Fisher exponent is obtained.
This is consistent with very small or no violation of hyperscaling.

PACS numbers: 64.60.Cn, 05.20.—y, 05.50.+q

The theory of critical phenomena provides a detailed
description of the properties of a physical system near
the critical point in terms of scaling and a set of critical
exponents. ' These exponents are universal for systems
in a given universality class. Only the spatial dimension
and the symmetry of the interactions enter in the
classification of universality class. For a given universal-
ity class, these exponents are not independent, but are re-
lated to each other by various proposed exponent equali-
ties and inequalities. One particular set of exponent re-
lations, the hyperscaling relations, involves the spatial di-
mension. This is of some importance because it enters
in renormalization-group theory, which has been able
to provide a detailed physical understanding of critical
phenomena. The possibility of hyperscaling violation
thus has broad fundamental implications. Failure of
hyperscaling for model systems in more than four dimen-
sions are well established. For soluble two-dimen-
sional models, such as the Ising model, hyperscaling is
obeyed exactly. In the physically interesting dimension
of three, with the absence of exact solutions, the validity
of hyperscaling has been subjected to extensive discus-
sions and considerable research.

Two numerical methods that have contributed to the
study of hyperscaling for three dimensions are series ex-
pansions and Monte Carlo simulations. The series
method produces accurate results for the system in the
thermodynamic limit and is only limited by the length of
the series and the method of analysis. Early series-
expansions results have been conflicting, ' but more re-
cent studies' ' are consistent with each other. In par-
ticular, one study' indicated that there are no grounds
for doubting that the three-dimensional spin- —, Ising
model obeys hyperscaling. In contrast, the applications
of the Monte Carlo method have been more incon-
clusive. ' ' Previous simulations are significant and very
useful, focusing attention on the possibility of applying
the Monte Carlo methods. In principle, this method pro-
vides numerically exact results on finite lattices. The
limitations to the method are the need for sufficiently
large lattices to probe the asymptotic scaling regime and

good sampling statistics. The quantities measured in the
simulations must also be able to provide an unambiguous
test of the hyperscaling relations without unnecessary as-
sumptions. ' Previous simulations have been constrained
by at least one of these limitations. '

In this paper, we report on extensive Monte Carlo
simulations and finite-size scaling analysis on the corre-
lation length of the spin-spin correlation function and the
renormalized coupling for the nearest-neighbor ferro-
magnetic Ising model on the simple-cubic lattice. A
wide range of lattice sizes and temperatures near T~
were used to produce the data, which were then analyzed
with the assumption that possible violations are due to
dangerous irrelevant variables. An estimate for the Fish-
er exponent was obtained. Furthermore, a previously
proposed method of analysis, involving the scaling prop-
erties of the renormalized coupling at a fixed ratio of the
correlation length to the lattice size, was also used to ob-
tain another estimate for the Fisher exponent. The re-
sults of both methods are consistent with very small or
no hyperscaling violation.

Finite size scali-ng of the correlation length and the
renormalized coup/ing. —One theoretical argument for
conceivable hyperscaling violation in models of the
three-dimensional Ising universality class is the possible
existence of a dangerous irrelevant variable. ' Al-
though, so far there has been no rigorous evidence for
such a variable, the consequence of its presence in regard
to hyperscaling violations has been explored in some de-
tail. ' In this paper, we will only quote those theoreti-
cal results related to the finite-size analysis of our simu-
lation data. The reader is referred to the original papers
for details.

Consider the finite-size scaling' of the singular part
of the free energy ft and the correlation length gt, '

where d is the dimension, t is the reduced temperature
t =(T Tc)/Tc. , h is the magneti—c field, and tt is the ir-
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f(x,y, z) =z 'f(xz ',yz '),
and

(3)

relevant variable. Care must be taken in the choice of
the definition for the correlation length of a finite sys-
tem;' ' the second moment of the correlation function
is considered here. Assuming that u is a dangerous ir-
relevant variable, one obtains

of I/kttT&=0. 221655. ' The uncertainty in TL is in

the last digit. We have varied our T~ within ten times
the uncertainty of Ref. 21 and our results remain the
same within our statistical errors. To measure yT, we
can also use the matching method on Eq. (10) or use the
following relation:

ln {[dgbL (t =0)/dt]/[dgL (t =0)/dt jlyT= (»)
lnb

&(x,y, z) =z"&(xz",yz") .

These equations imply the following:

fL =L F(EL ', hL "),
with yT =yT+p2yv and yz =yz+p3yv, .

(L(t, h) =L ' 'z(tL ', hL " ),

(4)

(5)

(6)

where dgL(t =0)/dt is the derivative of gL with respect
to t at t =0. b is a scale factor.

A much simpler method of analysis which does not de-
pend on the precise value of T~ was previously used by
Freedman and Baker. ' However, they need implicitly
the assumption ' that q tyv =0 and then choose values of
t )0 for which gL(t)/L =const. The finite-size scaling
properties become,

where yT* =yT+q~v and yH* =yH+q3yv. The cor-
relation-length exponent is related by

gL(t) -L (14)

v = (1+q lyU)/yT** . (7)

gt =(s')L/(s ')L2 —3. (9)

For h =0 and T near T~ this takes the form

gL(t) =G(tL") . (io)

2 —a can now be obtained from yT =d/(2 —a). We
have estimated v in two steps. First, we consider any
two sets of (t i,L i ) and (t2,L2) such that

A measure of hyperscaling violation is given by the
Fisher exponent m*. For the cubic-shaped system used
in our simulations, it was shown that'

Eo* =d (1 —1/ vy T ) .

This vanishes exactly if hyperscaling is obeyed.
To test hyperscaling without further assumptions, one

only needs to estimate v from the finite-size scaling prop-
erties of gL and yT from fL or the renormalized coupling

gL introduced by Binder, '

m* is estimated from this finite-size dependence.
Monte Carlo method. —%'e have adopted the defini-

tion of the correlation length used by Binder et al. ,
'

g; ) (r; —r) ) '(&s;s, ) —cL )
2d(L =

g;, ((s s, ) —cL)

where r; is the position of lattice site i,

cL = (1/I. ')g(s;s; ),

(is)

I ~ I I

{
I I I I

i
~ I ~ ~

t
I ~ I ~

[
~

and i' is the site with r; =r;+ 2 (1,1, 1)L. A modified
version of the very fast multispin vectorized Monte Carlo
code on the Cyber 205 supercomputer was used for a
wide range of lattice sizes (L ~ 96) and up to five mil-
lion Monte Carlo steps per spin. Different runs (typical-
ly five) were used to estimate the statistical errors. We
have ensured that our runs are sufficiently long to over-
come critical slowing down for the system sizes and tem-
peratures considered. Our results were also checked

R(L i, t i ) =R(L2, t p),

where

R(L,E) =PL(t)l/(L(t =0) =Z(EL )/Z(0) .

We obtain

0.15 — ~~ ox+

0
o0.10—

o
L= 8 16 24 32 48 64 96

ln(t 1/t&)

in(L, /L, )
(12) 0.05— X 0 CI 4 2( + 0

This can be considered as an adaptation of the "match-
ing method, " previously introduced to analyze Monte
Carlo data in another context. Second, an estimate of
1+q lyU is obtained from the L dependences of gL (t =0);
see Eq. (6). The value of Tc can, in principle, be ob-
tained as a fitting parameter, such that the "matching"
is successful. In practice, we started out with the value

0..00 I I I I [ I I ~ I I ~ ~ I
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I. . . , I

1.5 2

FjG. 1. Scaling plot of the ratio PL(t)/L vs the renormalized

coupling gL (t).
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FIG. 2. Plot of the correlation length at criticality vs the

size of the system. The dashed-dotted line is a least-squares fit

for the I ) 16 data. See text.

FIG. 3. Example of log-log plot of the ratio t2/t 1 vs Li/Lq
L2=16 and t2=0.03. The squares are for gz and the circles
for gz, . The lines are least-squares fits and the slopes give esti-
mates for the exponents. See text.

against published' ' ' ' Monte Carlo values for the
gL. The correlation-length data for large values of tL ' '
were compared with series-expansion estimates. The
agreements are very satisfying and full details will be re-
ported elsewhere.

Results. —The data for the correlation length and re-
normalized coupling were analyzed with finite-size scal-
ing. First, we present the data as a universal scaling plot

by plotting gt (t)/L vs gt (t) for L) 8; see Fig. 1. The
data scale very well, indicating that our data are in the
scaling regime and both qiyU and co* are very small.
For quantitative analysis, we have implemented the two
methods discussed above. From Eq. (6), we obtained by
least-squares fits for the large-L data (L) 16) an esti-
mate of qiy«= —0.0036~0.006. This is indeed very
close to zero; see Fig. 2. We have systematically exclud-
ed the smaller-size data in our fits and the estimates
remain constant within the errors. To apply the match-
ing method, we have fitted both the function R(L, t) [for

gt (t)] and gt. (t) with polynomials. For fixed values of
Li, L2, and t2, we obtain numerically the zero of the
function H(t 1 ) =R(L i, t 1 ) —R(Lq, t2). A similar pro-
cedure is used for gt (t). The exponents are estimated
with Eq. (12) by plotting t2/t i vs Li/L2 on a log-log plot;
see Fig. 3. We obtain by least-squares fits yT =1.578
~ 0.016 and y**= 1.57 ~ 0.02 or a =0.10~ 0.02 and
v=0.634~0.01. The errors are estimated by using dif-
ferent combinations of L i and L2 and are orders of mag-
nitudes larger than the changes produced by the uncer-
tainty in T~. These values give co* =0.001+ 0.07. yT
can also be obtained from the temperature derivative of
the renormalized coupling constants at t=0; see Eq.
(13). To use this method, we have analyzed our data for
L ~ 16. We obtained y* =1.584+0.03 and +*=0.01
+ 0.10.

To implement the method of Freedman and Baker, '

we have chosen various values for the ratio (L(t)/L and
fitted the data according to Eq. (14); see Fig. 4(a). The
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FIG. 4. (a) Example of log-log plot of the finite-size depen-
dences of the renormalized coupling vs the size for the fixed

value (I/L =0.14. (b) Estimates for the Fisher exponent with

the method of Freedman and Baker for a range of gl /L.

distributions of co* obtained by least-squares fits are
given in Fig. 4(b). The estimate for the average value is

0.015 ~ 0.02.
Discussions. —We have presented extensive Monte

Carlo simulations and separate finite-size scaling
analysis of the correlation length and the renormalized
coupling. The matching method of analysis was adopted.
This produces a very small estimate for the Fisher ex-
ponent of co* =0.001+ 0.07 in agreement with the result
m* =0.015 ~ 0.02, obtained by using the method of
Freedman and Baker. Thus, these new Monte Carlo re-
sults are consistent with the more recent series-expansion
result co*=0.001+ 0.010. ' Although the accuracy is
lower than that of the series expansion, our results are
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significant. We exhibit here clearly for the first time
that reliable estimates of the amount of hyperscaling
violation can be obtained from the Monte Carlo
methods. There is little doubt that the statistics can be
further improved. We have made no attempts to reduce
the sampling errors with various recently proposed tech-
niques to reduce the critical slowing down. These
are nontrivial to apply with the vectorized multispin cod-
ing, but will increase the efficiency and accuracy consid-
erably. They should be implemented in further studies.
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