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Superspace Geometry and Classification of Supersymmetric Extended Objects
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We provide a geometrical interpretation of the classification of supersymmetric p-dimensional extend-
ed objects. Specifically, we show that the action describing such an object exists by virtue of a nontrivial
class of the (p+2)th Chevalley-Eilenberg cohomology of superspace, considered as the super translation
group.
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The classical and quantum mechanics of extended ob-
jects is currently one of the central concerns in theoreti-
cal physics. Extended objects may arise either as partic-
ular solutions of certain field theories (e.g. , cosmic
strings) or they may be postulated to be fundamental (as
in the 26-dimensional bosonic string theory). In the first
case we can ask what will be the effective action for Auc-

tuations of the object with wavelength long compared to
its width. In this limit the extended object will behave as
if it were structureless, and its effective action can de-
pend only on its geometry. For instance, the action for a
structureless p-dimensional closed bosonic extended ob-
ject is'

m, , =a,x (g)e,x'(g)g„„ (2)

where the quantities ei;X" are the coordinates of the
forms ti;X"(g)dg' induced on W by the one-forms dX"
on M through the above immersion.

The geometrical action (1) is also that of a fundamen-
tal extended object since absence of structure is precisely
what is meant by the term "fundamental. " At least in

the case of bosonic strings, this dual role of the action
(1) has long been appreciated. Only recently, however,
has it been noticed that the same applies to supersym-
metric extended objects. For example, the superstring
action of Green and Schwarz, originally proposed as
that of a fundamental object, can be equally well inter-
preted as the effective action for a stringlike solution of a
supersymmetric field theory. This interpretation has
since been explored in the context of higher-
dimensional supersymmetric extended objects, ' and the

SD = —T„d +'g( —detm;~) '

where T is the p-volume "tension, " fg', i =0, 1. . . ,pf are
local coordinates on the "world volume" 8' swept out by
the object in the course of its evolution from some initial
to some final configuration, and m;~ are the components
of the metric on 8' induced from the metric g of Min-
kowski spacetime M by the immersion of 8' into M. In
local spacetime coordinates 4'", p =0, 1, . . . , (d —1)j,
W is defined by X"=X"(g') and

jg.,g,l =(r~C).,P„, lP„,g.j =tP„,P,)l =0, (3)

where I " are the Dirac matrices satisfying {I ",&'f =g"',
and C is the charge-conjugation matrix. The Lorentz
group is an automorphism group of this algebra, with P a
Lorentz vector and Q a Lorentz spinor. (For simplicity
of exposition we suppose that spinors are Majorana, so
that 0=0 C; the extension of those cases for which this
assumption is not applicable is straightforward. )

An important concept in this paper is that of an in-
varIant differential form on a group G. If we write the
group law as g"=g'g—=L~g—=Rgg', a differential form
H(g) on G is said to be left invariant (LI) if
H(Ls g) =II(g) [right invariance (RI) being defined
similarly]. In our case, G will be Z considered as the
manifold of the super translation group. Let (X",0') be
the coordinates of g E Z; the one-forms

H'=tH~=dx~ tey" de, H'=do—'ft (4)

are obviously LI and generate a basis for the
diA'erential forms on Z. Given the immersion tt: W Z
we have the induced forms p*(H") =dg'Hp, p*(H')
=dg'tl;8 on W; As in (2), the coefficients HP
—=8;X"—iOy" BiO can be used to construct the induced

results are consistent with a classification of the values
of p and d for which an action for a structureless super-
symmetric extended object exists. One of the purposes
of this paper is to present a mathematical interpretation
of the results of Ref. 8.

We begin by recalling the essential elements of the
construction of the supersymmetric extension of (1).
Just as spacetime may be defined as the coset

M =ISO(d —1, 1)/SO(d —1, 1) ="Poincare"/"Lorentz, "
and may be identified with the d-dimensional translation
group, so superspace may be defined by

2 ="Super Poincare "/"Lorentz, "
and again the coset Z is itself a (super)group, the super
translation group. Its generators (P„,Q, ) obey the Lie
superalgebra
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LI metric on W with components

(5)

The action for a supersymmetric structureless p-
dimensional closed extended object (a "super p-brane")
is then written as S =S~+S2, where

Sl = —TJ d~+'g( —detM;, ) 't (6)

is the obvious generalization of (1). The remaining term
in the action is a type of Wess-Zumino (WZ) term, as
was initially pointed out in the p =1 case' for which the
action is that of the Green-Schwarz superstring. This
term is best introduced by considering a (p+2)-form h

on Z having the following properties.
(i) h is a LI form on Z that is also Lorentz invariant.

We shall refer to this as super Poincare invariance. It
implies that h is a Lorentz scalar constructed from H .

(ii) The exterior differential of h is zero, dh =0; i.e., h

is a closed form. (This is, in fact, equivalent to the re-
quirement that h also be right invariant under the action
of the super translation group. ) For the superspace Z
the closure of h implies that h is the differential of some
(p+1)-form b, '' h =db. In other words, h is exact,
since every closed differential form on Z is also exact
(i.e., the de Rham cohomology of Z is trivial).

(iii) If we assign dimension one to X" then 8' must be
assigned dimension —, in order that H" have a definite
dimension (one). With these assignments h (and hence
b) should have dimension p+ l.

Given a (p+2)-form h on Z satisfying these require-
ments we construct S2 as

S,=„y*(b), (7)

where, as before, p*(b) is the form induced on W from
the form b on Z by the map p.

Requirements (i) and (ii) ensure that S2 is a super-
symmetric invariant (up to boundary terms). Require-
ment (iii) can be motivated as follows:' A structureless
object must have a Lagrangian of a deftnite dimension,
and since ( —detM;~)'t has dimension p+1, we require
b, and hence h, to have this dimension. Suppose that the
Lagrangian were to include two terms of different di-
mensions; it would then involve a relative coupling con-
stant of nonzero dimension. The effective Lagrangian
would then depend on whether the scale of interest is
large or small compared to the scale set by this coupling
constant, thereby contradicting the assumption that the
object is structureless.

The need for an S2 satisfying requirements (i)-(iii)
can also be motivated by consideration of a type of fer-
mionic gauge invariance, generalizing that of the mass-
less' and massive' superparticle (p=0), which allows
half of the components of 0 to be gauged away. The
necessity of this "K invariance" can in turn by motivated
by stability considerations for topological defects in su- dX=pf'~t, e~e"e ' e"C;,;, . . . ; (10)

persymmetric field theories. A remarkable consequence
of this invariance is that the gauge-fixed version of
the action S~+S2 is a world-volume-supersymmetric
(p+1)-dimensional field theory, and this may be con-
sidered as a further motivation for S2. ' ' In any case,
we shall consider that S2, and hence a (p+2)-form h

satisfying the above requirements, is necessary for a
physically acceptable action.

In this Letter we shall give a mathematical interpreta-
tion of requirements (i)-(iii) above in terms of the
Chevalley-Eilenberg (CE) cohomology' of Z, and ex-
plain why these requirements uniquely determine the
structure of the action. It turns out that h is a Lorentz-
invariant (p+2)-form belonging to a nontrivial class of
the (p+2)th CE cohomology group. Some of these
cohomology classes have previously played a role in the
group-manifold approach to certain supergravity theo-
ries. ' This should not be surprising since there is a close
connection between supergravity theories and supersym-
metric extended objects. '

We shall begin by explaining the basic concepts of CE
Lie-algebra cohomology. Let G be a Lie group and 5' its
Lie algebra. A p-cochain of 0 is a p-linear antisym-
metric map of 9'&& x9 to R (the general case in
which R is replaced by a general representation space I'
of 9 will not be needed here). The coboundary operator
8 maps the space of p-cochains CP(Q, IR) linearly into
C~+'(Q, R) and satisfies M=O. A p-cocycle is a p-
cochain c satisfying Bc=0 and a p-coboundary is a
"trivial" p-cocycle, i.e., one which can be expressed in
terms of a (p —1)-cochain c' as c =Bc'. Let Z and 8
be the vector spaces of p-cocycles and p-coboundaries,
respectively. Two p-cocycles are said to be equivalent if
they differ by a p-coboundary; the pth CE cohomology
group H"(Q, IR) is then the quotient Z~/8~ defined by
this equivalence. We shall not need to specify 6 because,
in our case, an equivalent definition of the CE cohomolo-

gy is provided by replacing the p-linear antisymmetric
maps of 5' to R by LI forms on the group G and 6 by the
familiar exterior derivative d (a one-to-one correspon-
dence between p-linear antisymmetric maps of 5' and LI
differential p-forms on G can be established by means of
a left translation). Then a CE p-cochain is a LI p-form
on G. Let Ie I be a basis of LI differential one-forms on
G. They satisfy the well-known Maurer-Cartan equa-
tions

de'=f'~ e~Ae, ij,k =1,2. . . ,dimG, (8)
where the f'~t, are the structure constants of 9 and the
exterior product A of forms will be understood in the
sequel. Now the p-form

l 1 l2X=e 'e ' . . e'C lll2' ' '
lp

with constant coefficients C;, ; is LI and therefore a
p-cochain. Using (8), we see that
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is also a (p+1)-cochain. Thus, the CE cohomology
group Ht'(O', H) is isomorphic to the cohomology group
E~(G, H) obtained by using the LI p-forms on the group
G, and the exterior derivative d. In other words,
E"(G,H) is the de Rham cohomology group for LI p-
forrns: Two closed p-forms are equivalent if their
difference is the differential of a (p —1) LI form. Since
(7) is obtained from the LI form h on G =Z, it follows
that E~(Z, H) are cohomology groups relevant to the su
perspace geometry and classification of supersymmetric
extended objects.

The extension of E~(G,H) to the supergroup case
G =X, is straightforward, at least at the formal level of
this Letter. A CE p-cochain of Z is a p-form of the type

for constant coefficients C~, . . . ~, . We shall now show
that if h =dc' it violates requirement (iii) or (i).

Observe that if c' consists of q factors of H' and

(p+ 1) —
q factors of II", its dimension will be

—,
' q+(p+1) —

q =(p+1) —
—,
' q. (i 3)

This equals p+ 1, as required, only if q =0, in which case
c' =II"' Il"'"C„' „.. . „,. By requirement (i) the
coeScients C„' „.. . „, must be those of a Lorentz-
invariant antisymmetric (p+1)th-rank tensor. This is

possible only if d-p+1, i.e., a p-dimensional object
moving in a (p+ 1)-dimensional spacetime. This is a de-
generate case which was excluded in the analysis of Ref.
8 and which will be excluded here too.

We conclude that a (p+2)-form h satisfying require-
ments (i)-(iii) must be a CE cochain satisfying

dh =0, h &dc', c' E C~+' . (i4)

Thus, h belongs to a nontrivial class of the (p+2)th CE
cohomology group E~+ (Z, H).

Note that there is a b such that h =db since, as we

mentioned, every closed form on X, is exact. This is nev-

ertheless consistent with h being a nontrivial element of
E~+ (X,H ) because, as can be checked in those cases for
which a (p +2) -form satisfying requirements (i)- (iii)
exists, the WZ (p+ 1)-form b is not a CE cochain, i.e., it
is not a LI form.

Let us now consider which (p+2)-forms h are con-
sistent with the requirements (i) and (iii). Suppose that
h consists of q factors of II' and (p+2) —

q factors of

with constant coefficients Cz . . . z, G R. The cocycle
condition is simply dA =0, so we can interpret the condi-
tion dh =0 in (ii) as the requirement that h be a CE
(p+2)-cocycle. Suppose now that h is a trivial cocycle,
i.e., a coboundary. Then h =dc' for some (p+ 1)-
cochain c' G C~+'(Z, H). Because c' is LI, it has to have
the form [see (4)]

(i2)

11". Then its dimension will be

—,
' q+(p+2) —

q =(p+1)+ —,
'

(q —2), (is)

which equals p+1, as required, only if q =2. Thus the
only possible Lorentz inv-ariant LI (p+2) form-of the
required dimension is proportional to

h =(der„, „,de)II"' . . II" . (i6)

As shown in Ref. 8, requirement (ii) is then satisfied
only for the values of (p, d) in one of the following four
sequences:

H:(i,3)(2,4); C:(1,4)(2, S)(3,6);

H:(1,6) (2,7) (3,8) (4,9)(S, 10); 0:(1,10)(2, 11);
associated with the four (real, complex, quaternionic,
and octonionic) division algebras. We have excluded the
p=0 case, i.e., the superparticle. In this case, the WZ
term in the Lagrangian is simply 08, and can be inter-
preted as a mass term. ' ' It originates from the two-
form d8d8, which is obviously closed, and is nonzero if
the charge-conjugation matrix C is symmetric; other-
wise, one must consider the larger N=2 superspace to
construct a similar nonzero form. Such a two-form, and
hence the mass term, determines a nontrivial element of
E (Z, H). As is well known, a nontrivial second coho-
mology group of a Lie algebra characterizes the exten-
sion of the algebra by an Abelian one. In the case of the
supersymmetry algebra this is nothing other than the fa-
miliar extension by a central charge. [Also, superspace
itself, viewed as a central extension group, is the result of
the existence of the closed two-form dHI "d8 (Ref. 18)).
Is there an analogous physical significance to the higher
forms of the CE cohomology groups?

In the group-manifold approach to supergravity the
higher cohomology groups are related to extensions of
the supersymmetry algebra to "free differential alge-
bras, " or "Cartan integrable systems. "' Also, higher-
order WZ terms play an essential role in the theory of
anomalies (see, e.g. , Ref. 19 and references therein).
Our work suggests that the differential forms of the
higher CE cohomology groups are related to extensions
of the supersymmetric current algebra. It is known that
the world-volume current algebra of supersymmetric ex-
tended objects cannot be that of ordinary supersym-
metric field theory, but must contain an additional
term. This is because the action of the extended object,
considered as a (p+1)-dimensional field theory, exhibits
a partial breaking of rigid supersymmetry (PBRS) and
this is possible only in the presence of the additional
term. It has been conjectured that this extension of the
usual current algebra is possible only for those cases tab-
ulated above. In this case, the extensions of the super-
symmetry current algebra of this type are possible only
when there is an appropriate nontrivial CE higher-order
cohomology group of Z. The relation between a nontrivi-
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al element of a CE cohomology group and the additional
central term in the algebra of supercurrents for models
exhibiting PHRS will be presented elsewhere.

To summarize, the only (p+ 2)-diA'erential forms h on
Z satisfying our requirements are those of the form (16)
and then only for the values of (p, d) tabulated above.
We have shown that each such form is a nontrivial ele-
ment of the CE cohomology group E"+ (Z, R). It should
be stressed, however, that there are other nontrivial ele-
ments of the CE cohomology group for which conditions
(i) and (ii) are satisfied, but which do not satisfy condi-
tion (iii). An example is the closed four-form
(dOI „QO)(dOI "'dO) of dimension two, for an (11,32)-
dimensional superspace. An interesting question is
whether these other nontrivial elements of the CE coho-
mology groups of X, also have a physical interpretation.
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