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Anomalous Roughening in Growth Processes
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We study the roughening of a growing surface near a morphological transition within a general scaling
framework. For a class of systems, where the transition can be related to directed percolation, the anom-
alous roughness at the critical point is at most logarithmical. In two-dimensional simulations we find
~ —logL, where w is the width of the surface and L is the substrate size.

PACS numbers: 05.40.+j, 05.90.+m, 61.50.Cj

What is the morphology of a growing surface? This
nonequilibrium problem has attracted increasing interest
during the last few years. ' Even for the simple Eden-
type growth which produces compact clusters different
morphologies can be found characterized by different de-
grees of surface roughness. They can be distinguished by
the roughness exponent g describing the algebraic depen-
dence of the surface width ~ on the linear size L of the
substrate on which the cluster grows: w —L». Starting
from a flat substrate the width increases with time t as a
power law ~—t»' for t&&L'. The general scaling be-
havior can be summarized in the form

8th =X[1+—,
' (Vh) ]+yV h+Dri, (2)

where k is the normal growth velocity, y an effective sur-
face tension, and D the strength of the (white) noise g.
Mapping Eq. (2) onto the Burgers equation the exact
values of the exponents could be obtained in two dimen-
sions (g= —,

' and z = —,
' ). Furthermore, surface growth

problems obeying (2) are related to polymer physics,
spin models, ' as well as the dynamics of a sine-Gordon

w =L «f(I/L'),

where f(c)—c«I' for c « 1 and f(c)—const for c» l.
The understanding of the growth of rough surfaces

was substantially improved by Kardar, Parisi, and
Zhang (KPZ), who first introduced the nonlinearity due
to lateral growth into the Langevin equation for the lo-
cal height h of the surface above the substrate,

chain. The nonlinearity guarantees the invariance of
Eq. (2) with respect to infinitesimal tilting which is re-
sponsible for the scaling relation

g+z =2.
Based on a renormalization-group investigation of the

KPZ equation it has been predicted that for space di-
mensions d & 3 a morphological transition should occur
between a weak coupling regime with the mean-field ex-
ponent (=0 and a strong coupling region with nontrivi-
al exponents g& 0. Simulations show a continuous di-
mensional dependence of the strong coupling exponents
which obey the scaling relation (3) and support the ex-
pectation that they approach the mean-field values for
d~

Transitions from a smooth surface (with finite width,
/=0) to a rough one (with diverging width, g&0) are
we11 known from thermal systems. Equilibrium shapes
of three-dimensional crystals provide examples for these
roughening transitions. By analogy we shall call all mor-
phological transitions between a smoothly growing sur-
face and a rough one kinetic roughening transitions. Ex-
amples have been found besides the KPZ transition, in
two-' and three-dimensional growth models. ''

In this Letter we present a general scaling picture for
morphological transitions between two phases of
different roughness, and we shall apply it to a class of
models where the connection with directed percolation
allows us to make specific predictions about anomalous
roughening. Suppose there is a transition at a critical
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value p, of a parameter p between two morphologies
i =1,2 characterized by the exponents g;, z;, and that
close to the transition point a new diverging length

' influences the roughness (e=p —p, ). Then
we propose the following scaling form of the surface
width:

w(e, L, t)-g~f;(L/g, t/g' ),
with the scaling function f ~ (f, ) above (below) the tran-
sition. Implicitly we assumed that g' as well as z' are the
same for e) 0 and t. &0.

Sufficiently far from the transition, (4) must repro-
duce the normal scaling (1). It follows that

lim f; (a,b) —a 'g;(b/a"),
a, b

so that far from p,

ically towards the left (right) by u lattice constants until

they vanish by collision.
In this model the maximum velocity is one lattice con-

stant per time step. In the smooth phase a finite portion
of the surface reaches the maximum height t at time t.
This requires that the probability of nucleation on the
uppermost terraces be higher than a (percolation)
threshold k. At the transition the density of terraces at
height t vanishes so that close to p, one may consider an

isolated terrace of size 2u+1. The probability of a criti-
cal nucleation event is then 1 —(1 —p, ) "+', i.e. ,

p, =1 —(1 —k) 't~ "+' in excellent agreement with the
simulation results (see Fig. 1).

The order parameter of the smooth phase is the same
as in the corresponding directed percolation problem,
namely, the density p(e, L, t) of sites at the maximal
height h =t,

w(e, L, t) —g 'L 'g;(g ' t/L ') p(e, L, t) =g, "P(L/g„, t/g, ), (7)

as in (1). Equation (4) describes the crossover between
the two phases. Since the width remains finite for any
fixed L and t, the divergent factor g» in (4) must be
compensated by a suitable power-law behavior of f; (a, b)
in the limit a 0 with b/a' fixed. Therefore, at the
critical point the surface shows roughening with anoma-
lous exponents g', z':

w(O, L, t)-L» g(t/L' ) .

In a class of stochastic growth models the physics un-

derlying the morphological transition is sufticiently well
understood that the anomalous exponents can be predict-
ed. These are models with a maximal velocity by which
the uppermost point of the surface can propagate.
Furthermore, the mass increase (growth rate) must be
tunable independently. For small growth rate the sur-
face propagates with a velocity smaller than the maximal
one, so that it is expected to show normal roughness. If
the growth rate is increased until the surface propagates
with maximal velocity, it always feels the global con-
straint and cannot get rough anymore. Therefore, one
has a morphological transition between phases with

gl )0 and g2 =0. The transition is triggered by directed
percolation: ' The stochastic growth process defines an
eA'ective local transition probability of reaching the level

corresponding to the maximum velocity at every time
step, i.e., an "occupation probability" for percolation
through directed paths.

As an example, we consider the polynuclear growth
(PNG) model ' on the square lattice. The surface is de-
scribed by a single-valued function h(x, t); i.e., it con-
sists of horizontal terraces and up and down steps.
Growth proceeds in the y direction by repeating the fol-
lowing two processes in one time step: (i) First particles
are deposited randomly on the surface ("nucleation" );
i.e. , the height h(x, t) increases by 1 with probability p
at every coordinate x. (ii) Then the terraces grow la-
terally; i.e., upward (downward) steps move determinist-
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The physical picture behind this identification is the fol-
lowing: The typical distance between the terraces at
height t is equal to the transversal size g, of the holes in

the corresponding percolation cluster. Up to this length
scale the surface develops anomalous roughness: co —g,»,
which agrees with (5) (gq =0) if g =g, . As it takes g,
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FIG. 1. Phase diagram p, (u) of the two-dimensional PNG
model. Circles correspond to numerical results. The full curve
is the fit p, = 1

—0. 1056 '

where g„—e " and g, —e ' are the transversal and

longitudinal correlation lengths known from the theory
of directed percolation. ' This implies that at p =p, the
set of points which reach the level h =t is getting fractal
with the dimension 1 —P/v„, and that p decays according
to the power law

P~~tp~ f

Comparing (7) and (4) it is natural to identify g, and

g, with g and g', respectively, so that

V=VI, z =Vi/Vp.
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until the distribution of the holes becomes stationary, it
is clear that this is the characteristic time g'.

Let us now describe the transition from the smooth to
the rough phase. It can be considered as a wetting tran-
sition if we regard the line y =t as a wall, the space be-
tween the wall and the surface as filled by liquid, and
that between the surface and the substrate as filled by
vapor. Then complete wetting takes place for p (p, .
We define the velocity V of the thickening of the liquid
layer as the order parameter of the rough phase,

log t
8

I I

k ~ k j
I

a ~
I

12
I

~ ~ ~ ~

o 0 o

0 ~ ~

16
—4

~ ~ CV

0 0 0 —-12 Q)
O

g ~ ~

V= 1
—v with v =B,h(t), (10)

—10-
—12-

—-16

where h(t) is the average height. By analogy with (7)
we make the scaling assumption

V(e, L, t) =g„'y(L/j„, t/g, ) . (11)
0 1 2 3 4

log, (L/60)
-20

Now we present an argument why P' should be equal
to v, . This is the essential simplification which allows us
to predict the exponent g. In the stationary state for

p )p, the surface moves with maximal velocity:
h(tp+t) =h(tp)+t. However, for p & p, there exists a
characteristic time z after which the surface stays behind

by one lattice constant compared to the position it would
have reached with the maximal velocity: h (tp+ r)
=h(tp)+r —1. This is just the time for which directed
percolation correlations survive, i.e., z —g, . Hence,
V = 1/r —g„' '. Comparison with (11) shows that
P' = v, . As a consequence, one gets at p,

V—1/t . (12)

Obviously, the surface has to fit into the interval between
the average height and y = t, so that

w & const& Vdt —logt .

Thus g'/z' and therefore g have to be zero.
It is known' that for p &p, percolation is sustained

within the angle arctan (g, /g, ). It corresponds to a finite

spreading velocity of surface perturbations. The charac-
teristic relaxation time is therefore proportional to the
substrate size L, i.e., z2 =1. Another consequence is that
clusters grown from a seed have facets' which vanish at

p, like e ' " implying the same critical behavior of the
cusp angle in the WulA' plot. '

In our simulations of the PNG model on the square
lattice we first calculated the order parameter p which
was used to locate the phase transition (Fig. 1). At p,
we observed power-law behavior according to (8) with

P/v, =0.16 in full agreement with directed percolation
theory' (P =0.28, v, =1.73, and v, =1.10 for d=2).

Far from the transition point, we obtained in the
rough phase the universal exponents corresponding to a
growth described by Eq. (2), i.e., P= 2 and P/z = 3 .
For the faceted phase we observed the cusp in the Wulff'

plot which we obtained by measuring the growth velocity
over a tilted substrate. '

FIG. 2. Scaling of the order parameter V as a function of
time t in the d=2 PNG model at p, =0.221, u =4. Symbols
are explained in Fig. 3. Inset: Stationary values of V as a
function of substrate size L.

w'-logt, w -logL. (14)

In summary we have presented a general scaling pic-
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FIG. 3. Anomalous roughening in the d=2 PNG model

(p, =0.221, u =4). ~ is the surface width, t the time, and L
the substrate size.

Detailed calculations for the anomalous roughening
were carried out for u =1 (p, =0.539+ 0.001) and u =4
(p, =0.221 +' 0.001). Typically 200 runs were taken
with L =60x2", n =0-5, 8, and the time went up to
t =2' . Figure 2 shows the numerical verification of
(12). The slope on a log V vs logt plot for p, is
—1.0 ~ 0.1. Based on Eq. (11) one expects
V(L, t ~)—L '. From the inset in Fig. 2 we obtain
z'=1.58~0.05 in accordance with percolation theory.
The square of the surface width was found to increase
logarithmically in agreement with (13) and has logarith-
mic size dependence (cf. Fig. 3):
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ture of anomalous roughening close to transitions in the
morphology of growing rough surfaces. In a class of
models with kinetic roughening the relation to directed
percolation leads to the solution z'= v, /v„and /=0.
This is a general result which applies to all models with
the described roughening mechanism in any dimension.
In particular this implies that above the upper critical di-
mension for directed percolation, d ~ 5, one obtains the
mean-field value z'=2. The anomalous exponents do not
obey the scaling relation (3) because the invariance with
respect to infinitesimal tilting of the growth direction is
violated. Our numerical results for two dimensions are
in full agreement with the theory. One cannot exclude
that for d ) 3 this transition interferes with the transi-
tion between the strong and weak coupling regions relat-
ed to Eq. (2). The investigation of this question, and the
determination of the anomalous roughening for the KPZ
and other morphological transitions remain interesting
future tasks.
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