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Hysteretic spiral turbulence is a remarkable phenomenon of coexistence of turbulent and laminar
domains in Taylor-Couette flow. We observe and measure for the first time a nonuniform pitch in long
geometries and its dependence on boundary conditions at the cylinder ends, and we explain these results
within the framework of phase dynamics. We also discuss the influence of secondary flow on the azimu-

thal width of the spiral.

PACS numbers: 47.20.—k, 47.30.+s

Spiral turbulence— the coexistence of laminar and tur-
bulent spiral regions in Taylor-Couette flow—is high-
lighted by Feynman' as an example of the richness of
phenomena described by the Navier-Stokes equations
(see Fig. 1). Spiral turbulence has been extensively
studied by Coles® and its existence region for a particu-
lar geometry mapped out in the (R,,R;) plane of
Taylor-Couette flow between concentric rotating
cylinders. Here R, and R; are proportional to the angu-
lar velocities Q, and Q; of the outer and inner cylinder,
respectively [R, =b(b—a)Q,/v and R;=a(b—a)Q;/v,
where a is the radius of the inner and b is the radius of
the outer cylinder, and v is the kinematic viscosityl.
Subsequently Van Atta,* at one point in the parameter
space, measured the pitch of the spiral and mapped its
profile in a plane perpendicular to the cylinder axes.

Spiral turbulence is particularly interesting among all
fluid instabilities, because it mixes short scale (or micro-
scale) turbulence and a well ordered structure at large
scales. It is the prototype of the “coherent structures” of
great interest in fluid mechanics in recent years.®> In this
Letter we report new measurements of spiral turbulence,
in particular of the spiral pitch, for different boundary
conditions, and propose a theoretical approach in the
spirit of Feynman' “to find the qualitative content of the
Navier-Stokes equations.” The novel observation that
the pitch varies along the axis fits well into a phase dy-
namics approach, which—we believe—is here applied
for the first time to a situation with sustained microscale
turbulence. In addition the well-known>* observation
that the turbulent spiral is of finite azimuthal width, will
be explained as resulting from the subcritical character
of the flow and its boundedness in the azimuthal direc-
tion.

It is important to stress the subcritical character of the
laminar-spiral turbulence transition, which leads to large
hysteretic effects.>> As shown by one of us,® subcritical
instabilities in general should lead to expanding or con-
tracting turbulent domains in laminar flow. For the
finite Taylor-Couette system, this cannot be the whole
story. In fact, large-scale Poiseuille flow in the laminar
region is generated by Reynolds stress in the turbulent

region. The case of weakly inclined, supercritical Taylor
vortices was worked out by Hall,” who completed previ-
ous work® on amplitude equations. In Hall’s work’ the
backflow is proportional to an integral over azimuthal
angle involving the square of the amplitude, which itself
is proportional to the Reynolds stress.” The theory for
the subcritical case has not yet been worked out, howev-
er; the same basic mechanism must be at work, and this
allows for a qualitative understanding. The backflow

FIG. 1. Spiral turbulence for fixed upper and lower boun-
daries, aspect ratio 30, R, = — 3000, R; =700 (from Ref. 2).
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counteracts the velocity of expansion of the turbulent
spot until the latter stops. The matching of azimuthal
Reynolds numbers (the relevant length being the azimu-
thal width of each region) for laminar and turbulent flow
(assumed to have the same average velocity) leads at on-
set to roughly equal azimuthal width of each region, up
to the mismatch between molecular and turbulent
viscosities in the respective regions.

The experimental apparatus used here has been large-
ly described in a previous paper.'® In brief, the
geometric parameters of our system are the radius ratio
a/b=0.882 and the aspect ratio I'=L/(b—a), which
can be as large as 73. The cylinder speeds were con-
trolled by Compumotor stepping motors with a rotation-
rate precision of +0.01%. The working fluid in all cases
was distilled water, with visualization of the pattern ac-
complished by the addition of 1% by volume Kalliro-
scope polymeric flakes. With a free upper surface the
fluid level may be changed continuously while the
cylinders rotate. Perturbation experiments in the hys-
teretic regime were carried out by our injecting fluid into
completely laminar flow through a small hole (0.15 cm
diam) in the side of the Plexiglas outer cylinder. Ap-
proximately 0.1 cm? of fluid is injected over a time of
less than 0.03 sec, while monitoring the visualized flow
with a television camera mounted on a rotating table.
The angular velocity of the table was set equal to the ex-
pected velocity of the turbulent spots (and ultimately the
turbulent spiral). Measurements of the pitch were made
by use of a multiple detector reflectance technique. At
two points along the axis, light from He-Ne lasers is fo-
cused on the fluid and the reflected light detected by
photodiodes, the output of which is digitized and sent to
our PDP-11/73 computer for analysis. The time delay
between the two signals, together with the distance be-
tween the detectors, yields the pitch.

We have followed the azimuthal and axial expansions
of a spot created at the midpoint of the cylinder in the
manner described above. The spot created expands ini-
tially much faster (~2 times) in the azimuthal direction
than in the axial one as shown in Fig. 2. The azimuthal
expansion stops as soon as about half of the perimeter
length is reached, i.e., from our point of view as soon as
there is sufficient backflow. The spot then breaks into
two spots in the axial direction, which propagate axially
and azimuthally, their width being always approximately
that of the final spiral. These spots may then undergo
further splitting and subsequent growth. The different
pieces eventually connect and construct a spiral. The
presence of axial propagation shows that the backflow
has in fact a complex three-dimensional structure.

Spiral turbulence is found over a wide range of R( and
R;. We limited our detailed survey to the hysteretic re-
gime. We have found that for I'=73 persistent spirals
occurred only for R, > —4000, and that at R, = — 8000
no large scale organized structure was apparent. In this
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FIG. 2. Axial (x) and azimuthal (*) widths of turbulent
spots for R, = — 3000, R; =770. The widths are scaled by the
average perimeter length of 35.3 cm, and the time by the outer
cylinder period of 0.91 sec. Fits to the first seven points in each
case yields initial front velocities of 1.78 cm/sec for the axial
case and 3.86 cm/sec for the azimuthal case. Representative
error bars are shown for each case.

case a “‘broken” spiral pattern is found, i.e., the pattern
may be locally a spiral, but the helicity changes over an
axial distance of the order of the cylinder diameters.
Some regions may not show even local spirals, just tur-
bulent patches. This same incoherent state is found with
either free or rigid upper boundary. A simple spiral pat-
tern does not emerge until the aspect ratio is lowered to
== 28. Measurements on the simple spirals at large as-
pect ratio were therefore confined to R, = —3000. As
shown in Fig. 3 these spirals were always observed to
have a pitch that varied with axial position. We take
first the case in which the top and bottom boundaries are
rigid and move with the outer cylinder. If the outer
cylinder, as viewed from above, rotates clockwise, then a
right-handed spiral would have a Jower pitch near the
bottom of the cylinder than near the top, while a left-
handed spiral has a /arger pitch near the bottom that at
the top. If the outer cylinder rotates counterclockwise,
then, consistent with the first observations, a right-
handed spiral would have a lower pitch at the zop of the
cylinder than at the bottom, while a left-handed spiral
would have a larger pitch at the top than at the bottom.
In other words, the pitch is lower near the end away
from which the spiral appears to be moving. The aver-
age pitch depends only weakly on R;. Its value is compa-
tible with that measured previously.* With a free upper
surface the picture changes dramatically. For a counter-
clockwise rotation of the outer cylinder, a right-handed
spiral looks much the same as for the rigid-rigid bound-
ary condition case, while a left-handed spiral has a much
lower average pitch. In the former case the spiral wraps
around the cylinder approximately twice, while in the
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FIG. 3. Spiral turbulence with I'=73, R, = —3000,
R; =950, and outer cylinder rotating counterclockwise viewed
from above. The turbulent band always turns in the direction
of rotation of the outer cylinder. (a) and (b) have rigid upper
boundaries, (c) and (d) have free upper boundaries. In (a)
and (c) the spirals propagate downward and have lower pitch
at the top. In (b) and (d) the spirals propagate upward and
have lower pitch at the bottom. There is a substantial average
pitch difference between (c) and (d) as discussed in the text.
Typical pitch angles for case (b) are 19° = 1° at the bottom
and 44° 1+ 6° at the top, while for (d) they are 16° = 0.5° at
the bottom and 29° = 2° at the top.

latter case it wraps around 3 times. In all of these cases
the spiral pitch persisted over many hours of observation
and was reproducible from run to run.

We shall now attempt a simple phase-dynamics ap-
proach to describe the observed pitch of the turbulent
spiral and its variations, compatible with the symmetries
of the problem.

Let ¢(z,t) be the mean azimuthal position of the
spiral at height z and time . We treat ¢ as a real quan-
tity, its periodicity does not matter for the present pur-
pose. The quantity ¢ is a phase in the sense that a uni-
form shift of ¢ has no dynamical effect, because of the
axisymmetry of Taylor-Couette flow. The simplest pos-
sible form of a phase equation then takes the same form
as that considered by Pocheau et al.,'' for representing
the effect of transverse flow on Rayleigh-Benard roll
structure, namely,

o, +ve, =De,, . (1)

We shall postpone considerations of boundary conditions,
and note that Eq. (1) has a family of solutions

e=wt—z)/v+d(z), 2)

where w is a constant of integration and v is the apparent
axial velocity of the spiral in the laboratory frame. ®(z)
is considered below. The value of the pitch is undeter-
mined, as is the wave number of the Rayleigh-Benard
rolls in the phase equation of Ref. 11. The absolute

value of the pitch should be allowed to vary in a band, as
the roll wave number. This can be taken into account !
by the introduction of a pitch dependence in D [cf. (1)].
We shall neglect this in our simple approach, as well as
any velocity dependence on pitch. The function ®(z) in
(2) is the solution of v®, =D®d,, and thus of the form

®(z) =¢gexpvz/D) . 3)

The only boundary conditions compatible with phase
invariance are ¢, =a at one end (say z=0) and ¢, =g at
the other end (z=L). Parameters a and B, which de-
scribe the locally imposed pitch, could be computed in
principle within the framework of a complete amplitude
equation. Similar coefficients have been calculated by
Cross'? in a different context. Those terms should take
into account the interaction between the Ekman layer
and the finite amplitude solution.

We do not expect a and B to be the same, because of
the structure of turbulence within the spiral. The ob-
served splitting of a spot into two, one moving upwards,
one downwards, reflects itself in the end in the existence
of spirals of either helicity. It corresponds to a spontane-
ous axial symmetry breaking, which should be associated
with a difference in the internal structure of the spots,
made of progressive finite amplitude waves moving axial-
ly in either direction. As the fluid outside the spiral is
linearly stable against those waves, they only propagate
within spiral boundaries, being emitted at one side and
absorbed at the other. This view is consistent with the
observed asymmetry between leading and trailing edges
of the spiral azimuthal profile.* Consequently, waves are
emitted at one end of the spiral and absorbed at the oth-
er, which leads to a being different from 8. A full pic-
ture would need an extension of the results in Ref. 6 to
complex amplitudes of progressive waves.

We note that the same symmetries as above would be
present for spiraling Taylor vortices.”® There too the
pitch would be nonuniform, at least for large aspect ra-
tios. On the other hand, the subtle dependence of wave-
length (here pitch) upon boundary conditions'® for
steady structures such as Rayleigh-Benard rolls near
threshold, does not seem to be relevant for inclined Tay-
lor vortices. This is because their phase is always in-
creasing or decreasing when measured at the boundary.
Thus this phase cannot be taken as a relevant constant
parameter for constraining the wavelength of the struc-
ture. The general solution of Eq. (2) is thus

o(z,t) =w(t —z)/v+e¢oexp(vz/D) . 4)

Here ¢¢ and w are determined by boundary conditions at
z=0and z=L,

o=l 2”8 __ w_,v_, 5)
© v 1—expwL/D)’ v °D

There is then a continuous variation of the pitch ¢, be-
tween a and B. The experimental results show that a=p,
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generically. If a=p, then from (5), #o=0 and one ob-
tains the solution of constant pitch ¢(z,7) = —a(vt —z).
We note that Eq. (1) is invariant under the symmetry

)

[z—> -z

vV— TV

which relates two possible spirals of opposite helicity.
This, however, also interchanges boundary conditions
and therefore a spiral that in one helicity is compressed
at the bottom and expanded at the top shows the oppo-
site behavior in the other helicity. These features are
evident in the experimental data.

However, once the symmetry between bottom and top
is broken, as in the case when the top interface is a free
surface and the bottom one rigid, there is no reason
based on symmetry that the two spirals of opposite heli-
city are related. For the free-rigid case, this is what the
data show. The data moreover show that for one of the
helicities the pitch is relatively insensitive to whether the
upper surface is rigid or free.

Phase dynamics thus provides a simple framework in
which to discuss the pitch of spiral turbulence, its axial
variation, and dependence on boundary conditions.

A final remark is the following: As reported above, at
R, = —28000 a simple spiral pattern only emerges at low
aspect ratio. There is an apparent contradiction between
this result and the stable spiral solutions of Eq. (1),
which exist at any cylinder length L. However, the
greater L, the less stable the spiral becomes, because the
least stable perturbation decays as exp(—Dx?/L?)t. We
conjecture that for large aspect ratio the spiral becomes
unstable against a secondary instability, not included in
the phase dynamics approach, and which involves cou-
pling with complex secondary flow.'* This conjecture is
reinforced by the fact that the typical correlation length
for a broken turbulent spiral is of the order of the
cylinder diameter, which also characterizes the large
scale flows.
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FIG. 1. Spiral turbulence for fixed upper and lower boun-
daries, aspect ratio 30, R, = — 3000, R; =700 (from Ref. 2).
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FIG. 3. Spiral turbulence with I'=73, R,=—3000,
R; =950, and outer cylinder rotating counterclockwise viewed
from above. The turbulent band always turns in the direction
of rotation of the outer cylinder. (a) and (b) have rigid upper
boundaries, (c) and (d) have free upper boundaries. In (a)
and (c) the spirals propagate downward and have lower pitch
at the top. In (b) and (d) the spirals propagate upward and
have lower pitch at the bottom. There is a substantial average
pitch difference between (c) and (d) as discussed in the text.
Typical pitch angles for case (b) are 19°+1° at the bottom
and 44° £ 6° at the top, while for (d) they are 16° £0.5° at
the bottom and 29° & 2° at the top.



