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Diff'usion-Limited Coagulation in the Presence of Particle Input: Exact
Results in One Dimension

Charles R. Doering ' and Daniel ben-Avraham
Department of Physics, C!arkson University, Potsdam, New York i3676

(Received 14 December 1988)

We solve the diffusion-limited single-species coagulation process (A+A A) with random particle
input in one spatial dimension. We derive the exact time-dependent concentration, the spectrum of re-
laxation rates, and the distribution of interparticle distances in the nonequilibrium steady state. These
results imply an interesting microscopic spatial structure induced by the nonequilibrium constraints.
The validity of rate-equation descriptions of the macroscopic statics and kinetics is investigated, and we
compare our results to the closely related single-species annihilation process (A +A inert) in the pres-
ence of input.

PACS numbers: 82.20.Mj, 02.50.+s, 05.40.+j, 05.70.Ln

The role of fluctuations in irreversible diffusion-
reaction processes has attracted much attention in recent
years. ' "Diffusion-limited" reactions take place on a
time scale much shorter than the typical time between
reactant encounters. Spatial fluctuations in diffusion-
limited reactions can dominate the kinetics of these pro-
cesses, invalidating the standard "mean-field" rate-
equation approach to the macroscopic dynamics. In
the presence of uniform particle input, where one expects
a stationary state to be achieved, some processes display
spontaneous spatial inhomogeneities, ' ' ' or even no
steady state at all. ' In this Letter we study what is
perhaps the simplest model of a diffusion-limited reac-
tion, the one-dimensional single-species coagulation pro-
cess, in the presence of particle sources. ' ' We derive
the exact time-dependent concentration and the steady-
state distribution of distances between adjacent particles.
These are the first analytic results for the microscopic
spatial structure of such a nonequilibrium stationary
state.

The diffusion-limited single-species coagulation pro-
cess, A +A A, is a collection of particles executing in-
dependent Brownian motions suffering a "fusion" in-
teraction when two particles meet (so this process is the
same as the irreversible chemical reaction scheme A+A

2+8, 8 inert). In one spatial dimension we may
consider point particles, and in the absence of sources the
exact time-dependent concentration of A-species parti-
cles, C(t), has been previously derived. ' ' The concen-
tration does not obey the usual mean-field rate equation
dC/dt = —kC (for a review, see Ref. 17). Rather, at
late times it obeys the rate equation dC/dt = —ttDC,
where D is the diffusion coe%cient. In fact, this asymp-
totic rate equation is valid for all times if and only if the
initial distribution of particles on the line has a probabil-
ity density of interparticle distances x given by

pp(x) = (zt/2) Cox exp{—(tt/2) Cox '/2l,

tribution functions (IPDF's) and rate equations, appears
in Ref. 15.

To study the process in the presence of particle input,
we assume that the diff'usion-reaction process described
above is taking place with particles appearing randomly
at rate R particles per unit time, per unit length. (Thus,
if the reaction or diff'usion were "turned off" the concen-
tration would obey dC/dt =R.) The key to the exact
solution is the fact that the problem can be reduced to a
soluble one body-problem' ' for the evolution of the
probability distribution of the interval between adjacent
particles, i.e., the IPDF. To formulate the evolution
equation for the IPDF it is convenient to consider a de-
rived quantity —the time-dependent probability of
finding that an arbitrary interval of given length is void
of particles. '

Let p(x, t) be the time-dependent IPDF so that
p(x", t)dx" is the probability that the nearest neighbor
(on one side) to a randomly chosen particle lies at a dis-
tance between x" and x"+dx". Choose a point at ran-
dom and consider this point to be an end of a randomly
located interval of length x. Then the probability that
this point falls in an interparticle gap whose length is be-
tween x" and x"+dx" is

x "p (x",t )dx" yp (y, t )dy =C (t )x"p (x",t )dx", (2)

where we use the fact that the concentration C(t) is the
inverse of the average distance between adjacent parti-
cles. If this randomly chosen point falls in a gap of
length x", then the probability that the next particle on
one side lies at a distance between x' and x'+dx' from
the point is the uniform distribution in the interval of
length x", i.e., 8(x"—x')dx'/x". Thus, the probability
that the nearest particle (on one side) to a randomly
chosen point lies at a distance between x' and x'+dx' is

{C(t )x "p (x",t )dx"{{0(x"—x') dx'/x "{

where Co is the initial concentration. This result, and a
previous study of the relation between interparticle dis-

, C(t)p(x", t)dx" 'dx'. (3)
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Finally, the probability E(x,t), that an interval of
length x is empty, is the probability that the nearest par-
ticle (on one side) to the randomly chosen point lies at a
distance greater than x. Thus,

O.IS

E(,t)=„" '), C(t)p( ",t)d ")d '. (4)

Knowledge of E (x, t) allows for an easy recovery of both
the time-dependent concentration and the IPDF:

C(t) = —BE(x,t)/Bx i =p,

p(x, t) =C(t) ' B'E(x, t)/Bx'.

To derive an evolution equation for E (x, t) we consid-
er the possible processes which contribute to its time evo-
lution. The probability will increase in a small time in-
terval At only if an interval of length x contains just one
particle, located at an end point of the interval, and this
particle diffuses out of the interval. Using Eq. (3), this
contribution to the change in probability is

0.04

0.00
0.00 0.05 O.IO

(8/2D)' sa
O.I5 0.20
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FIG. 1. Monte Carlo (points) and theoretical (line) steady-
state concentration vs particle input rate. These dimensionless
quantities are expressed in units of the simulation's lattice
spacing a.

aE) =2(Dat/ax') [—BE(x,t)/Bxh x. Eo(x) =Ai[(R/2D) 't'x]/Ai[0], (i2)

BED =2(Ddt/hx ) [BE(x+Ax,t)/Bx]hx . (8)

Second, the input at rate R particles per unit length per
unit time leads to the loss term

AE3 = —RxhtE(x, t) .

Combining these terms leads to the master equation

BE/Bt =2D B E/Bx RxE, — (ioa)

with the boundary conditions

E(o, t) =1

(because we are considering point particles), and

The factor of 2 above results from the fact that this pro-
cess can occur at either of the two ends of the interval.
The probability will decrease due to two processes.
First, a particle just outside the interval can diff'use into
the interval (at either end):

with a„ the nth zero of Airy's function. For example,
—a =2.3381.. . , —a2 =4.0879. . . , etc. ' The higher
eigenfunctions, now labeled by n, are

E„(x)=Ai[(R/2D) ' 'x+a„] . (i4)

The stationary concentration C, (R,D) of the single-
species coagulation process with random particle input
is, from Eq. (5),

C, (R,D) = (
~

At'[0]
( /At[0] ) (R/2D) '"

= (0.72901. . . ) (R/2D) '", (is)
with Ai'[0] = —0.25881. . . . The stationary IPDF com-
puted from Eqs. (6) and (12) is

where Ai[z] is Airy's function, ' satisfying Ai" [z]
=zAi[z], and, in particular, Ai[0] =0.35502. . . . The
rest of the spectrum is

X„=~a„~ (2DR )', n=1, 2, . . . ,

E(,t) =0 (ioc) p, (x) = (R/2D) ' Ai" [(R/2D) ' x]/ (
Ai'[0]

~
. (16)

(for nonvanishing concentration). In the derivation
above we have made no mention of the coagulation pro-
cess. The reaction A +A A is imposed by the require-
ment (used above) that only one particle may be at a sin-
gle point in space.

The general solution of Eq. (10) may be expressed as
a sum of terms of the form e "'Eq(x), with the eigen-
functions Ez(x) satisfying

—XE~(x) =2D B E~/Bx RxEq. —

This eigenvalue problem is solved by inspection —this is
just Airy's equation. ' The properly normalized station-

We have performed Monte Carlo simulations to
confirm these results, and in Fig. 1 we show the theoreti-
cal and measured stationary (time-averaged) concentra-
tions as a function of (R/2D) 't . The simulations were
performed on a lattice of 10 sites, by the "direct" simu-
lation method. The interparticle probability density
was also measured in the simulations, and the results are
compared with theory [Eq. (16)] in Fig. 2. In both cases
the agreement is excellent. When R =0 the spatial
structure of the particles achieves a dynamic-scaling
form ' characterized by the IPDF in Eq. (1) with Cp re-
placed by C(t). For D=O no reactions take place and
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0.8 tion and its relaxation is

dC(t)/dt = aD—C +PR, (17a)
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FIG. 2. Monte Carlo (points) and theoretical (solid line)

steady-state IPDF, scaled by the average distance between par-
ticles. The broken line is the dynamic-scaling IPDF for R =0,
while the dash-dotted line is the exponential IPDF for equilib-
rium or D=O.

the concentration approaches C(t) =Rt, while the IPDF
approaches p(x, t) =Rte

The IPDF's in Eqs. (1) and (16) display an interesting
microscopic structure for these nonequilibrium states. In
thermal equilibrium one expects the maximum-entropy
distribution of particles characterized by an exponential
IPDF, p (x) =Ce '. In the nonequilibrium steady
state the IPDF vanishes near x =0 indicating an effective
repulsion of particles, and the probability of large gaps
between particles decays much faster than exponential
(proportional to a power of exp[ —x t ]). These facts
indicate a far more regular spatial arrangement of parti-
cles. The probability of large gaps decays even faster in

the dynamic-scaling state (proportional to a power of
exp[ —x ]), indicating even more order. This simple
interacting-particle model thus serves as an example of
static and dynamic self-ordering in far-from-equilibrium
systems.

Our results have some implications for the validity of
a rate-equation description of this system's macroscopic
kinetics. In the absence of input, R=O, the concentra-
tion (eventually) obeys dC(t)/dt = —+DC . On the oth-
er hand, if the diA'usion is turned oA; D=0, the concen-
tration obeys dC(t)/dt =R. It is not unreasonable to hy-

pothesize an autonomous polynomial rate equation for
the combined process of the form dC(t)/dt = —rrDC

+R. However, this is incompatible with the correct sta-
tionary concentration given in Eq. (15).

Near the nonempty stationary states an approximate
rate equation can be derived on the basis of the exact
concentration and the relaxation spectrum Eq. (13).
The asymptotic approach to a nonempty stationary
state is described by C(t) =C, +6Ce ', with X| = i a| i

x(2DR ) 't . Hence, the simplest first-order equation
which correctly captures both the nontrivial concentra-

where

a =2
i
a i i Ai[0] /3Ai'[0]

p =
i
a 1 i [ Ai'[0] [ /3Ai [0] .

(17b)

The diff'erence in the reaction kinetics in the presence of
both reaction and diff'usion and/or input can be traced in

part to the spatial structure of the nonequilibrium states.
The IPDF's inAuence the rate at which particles interact,
so it is not surprising that the reactions proceed at dif-
ferent rates in diff'erent situations even if the macroscop-
ic concentrations coincide.

We may combine our knowledge of the system's be-
havior in the limits D /R~ 0 and ~, as well as the sta-
tionary case, to construct a rate equation for this process
reproducing all the correct dynamics. Such a first-order
equation must be of the form

dC(t)/dt = [—aDC'+PR]F(C/C, ), (18a)

where C, =C, (R,D) is given in Eq. (15), and the "scal-
ing" function F(z) satisfies

F(0) =1/P, F(1)=1, F(ee) =sr/a. (18b)

The claim is that this nonpolynomial rate equation
would describe the time-dependent concentration after
initial transients have died away. This rate equation
may even be valid for some time-dependent problems, for
example, if R was modulated periodically.

These considerations apply as well to the single-species
annihilation process A +2 inert subject to random in-

put at rate R. We have investigated the IPDF's in this
process via Monte Carlo simulations, ' ' ' observing the
scaling behavior without input, and a stationary IPDF
with input. (The functional forms of the IPDF's are not
the same as in the coagulation process. For example, the
steady-state probability of large gaps decays proportion-
al to a power of e '.) The concentration' eventually
obeys dC jdt = —4rrDC' for R =0, and Racz has
found the stationary concentration and relaxation rate
when R&0. Amazingly, they are also closely related to
those of the coagulation process with input:

C,'=2 ( i
Ai'[0] i/Ai[0])(R/2D) ' =2 C,

and Xl =2
i a| i

(2DR ) ' =2 ) l. Thus, a first-order
rate equation must be of the form

dC'(t)/dt = j —aD(2 C') +PR/G((2 C')/C, ), (19)

where C, (R,D) is given before in Eq. (15), a and P are
the same as in Eq. (17b), and the scaling function G(z)
satisfies the same constraints as F(z), i.e., G(z) =F(z)
for z =0, 1, and ~. This result suggests the interesting
possibility that, if they exist, G(z) =F(z) for all z. Fur-
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ther investigation of this problem is left to a future
study.

Finally, and most importantly, our exact results also
show that no autonomous first-order rate equation can
possibly exist for arbitrarily fast input rate changes in
the one-dimensional single-species coagulation process.
Here is a counterexample: Consider an experiment in
which R =0 from some large negative time until t =0, so
that the interparticle distances are then distributed ac-
cording to the IPDF in Eq. (1) [with Co=C(0) ~0]. At
time t=0, R is suddenly switched to the value R* so
that the stationary concentration for input rate R* is ex-
actly C(0), i.e. , C, (R*,D) =C(0). If the concentration
obeyed a first-order equation, then C(t) =C(0) for all
t ~ 0. However, dC/dt at t =0+ may be evaluated from
Eq. (10a). It is nonvanishing —in fact, the concentration
increases past t=0 before relaxing back to C(0) as
t ~. Thus, in general, at least a second-order macro-
scopic rate equation is required for the concentration, de-
pending also on dR/dt.

To summarize, we have solved the irreversible single-
species diff'usion-limited coagulation process A +A A. ,
with steady input, in one spatial dimension. Our results
illustrate a microscopic self-ordering in the nonequilibri-
um stationary state, and show that no first-order polyno-
mial rate equation applies to the system's macroscopic
behavior. We hope to generalize our analytical ap-
proach, in terms of the dynamics of empty spaces, to
several other processes: the reversible process A +A =A,
and the coagulation process in higher spatial dimensions.
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