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Time of Zener Tunneling
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The time of Zener tunneling, iz, is calculated for a general two-level quantum-mechanical system by
two methods. In the first we determine the width of the transition profile in time. In the second we ap-
ply an oscillating perturbation and examine how the final transition probability depends upon the pertur-
bation frequency and phase. Both methods show, given that the coupling energy between the diabatic
levels is 6 and the time rate of change of the energy is a, that in the adiabatic limit rz scales as 5/a and
in the sudden limit rz scales as (h/a) 't . We calculate the approximate transition probability at finite
times for the two limits. The results can be applied to specific mesoscopic electronic systems.

PACS numbers: 73.40.Gk, 03.65.—w

Since the problem of level crossing (Zener tunnel-
ing' ) was first addressed circa 1930, its application to
many fields has been recognized. Examples include
atomic collisions, atom-surface scattering, molecular
physics, and molecular biology. ' More recently this
problem has been introduced into the growing field of
submicron physics. Two apt examples are recent studies
of ultrasma11 tunnel junctions driven by an external
current source, '' ' and the response of small normal-
metal rings to a time-dependent Aharonov-Bohm Aux. '

In these and many other cases one deals with level dia-
grams involving multiple level crossings. This is illus-
trated in Fig. 1, in which the instantaneous energy eigen-
values of a system are plotted as function of p, the exter-
nal parameter (magnetic flux, electric charge, the dis-
tance of the atom from the surface, etc.). Although the
details of the microband structure depend on the
specifics of the problem, ' ' their qualitative features
are quite general.

When p varies with time, one often has to deal with
consecutive Zener transitions. In the present work we
point out that in order to facilitate such an analysis, it is
necessary to characterize these Zener transitions not
only in terms of asymptotic probabilities (or probability
amplitudes), but also by the time it takes the system to
Zener tunnel. This Zener time, zz, determines whether
consecutive Zener events can be considered as separable.
Also, by comparing zz to another time scale in the
problem —the phase-coherence time z&—it is possible to
determine whether consecutive Zener tunneling events
should be treated as sequential and incoherent, de-
scribed, e.g. , by a master equation, or as sequential,
coherent events.

We have conducted a systematic study of Zener time,
using several alternative approaches, both analytic and
numerical. We have found two diAerent limiting expres-
sions for zz in terms of the parameters of the problem.

In the almost adiabatic limit we find

The result of Eq. (1) has been suggested earlier on the
basis of heuristic arguments but its limited validity
(y«1) had not been discerned. Biittiker and Landauer

3.0

2.5

2.0

1.5

1.0

0.5

0.0 —1 —0.5 0.5

FIG. l. A plot of the instantaneous energy eigenstates of a
system with multiple level crossings, as a function of some
external control parameter p. The points labeled a and b are
gaps between the two lowest bands referred to in the text.
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where 2h, is the narrow gap separating two consecutive
microbands (cf. Fig. 1) and a is the rate at which energy
is exchanged with the external source in the limit h. is
zero (a = limts o d—E/dt) Equatio. n (1) is valid for
y—= Aa/6 «1. In the sudden limit (y»1) we find

(2)
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P+(~) = ~a+(+ ) ~'=e (4)

To define the time for Zener tunneling we employ two
main approaches. The first one (the internal clock) is to
investigate the probability profile P+ (t) —=

~
a+ (t)

~

(Fig. 2). We can identify the crossover time from the in-

itial probability P+( —~) to the asymptotic probability
P+(+ ~) as the transition time and study how it scales
with a and A. The second approach (external clock) is
to add an oscillating component to Hp and identify the
inverse Zener time as a characteristic frequency appear-
ing in the response of the system to the perturbation.

Width of the probability profile In the sud.d—en limit
we can expand Eq. (4) in powers of ) '. We therefore
look for a solution of the Schrodinger equation of the
form a+(t) =g) a+ „(t), with an initial condition
a+(to) =1 and a —(to) =0, where to is a large, negative
time. In terms of y=—t/( /ha) 't, we obtain to order )

l (P' P' )/2 1a+(y) =e '
1 —— e'"

~ e " dudv
&~ J0 &+0

(5)

Using Eqs. (4) and (5) one can see that the rescaled
profile [P+(t) —P+(~)]/[I P+(~)l is a "universal"—
curve for y»1. In particular we have shown that the
width of the transition scales as (h, /a) 't .
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have derived a result equivalent to Eq. (1) for Zener
breakdown (tunneling in k space). ' The result of Eq.
(2), as well as the distinction between rz in the sudden
and adiabatic limits, is new. We find that our definitions
of the Zener time derived using both an "internal clock"
and an "external clock" (each carrying a different physi-
cal meaning) yield compatible results for rz. This
differs from tunneling in real space in which different
definitions of the time of tunneling which rely on either
an external or an internal clock may yield different re-
sults. We also derive results, pertaining to multiple
Zener dynamics, for the tunneling over finite time, as op-
posed to the asymptotic probability. Our analytic results
have been confirmed by extensive numerical studies.
Below we give some details of our analysis. We then con-
clude by commenting on possible physical implications.

To define the time of Zener tunneling we consider a
driven two-level system described by the Hamiltonian

Hp=etS, +hS

where S, and S, are Pauli spin- —,
' matrices. Here a is

the rate of change of the energy of the uncoupled (5 =0)
levels due to the external driving bias and h, is the cou-
pling between the levels.

It is convenient to define the state of the system
y(t) =a+(t)

~
+)+a —(t)

~

—) in terms of the diabatic
states which satisfy S, ~

+ ) =+
~

+'). We chose as an
initial condition a+( —ee) =1 and a —( —ee) =0. The
asymptotic Zener probability is '
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FIG. 2. A plot of P+(t), the probability of being in state
~

+) at time t. The parameters are y=20 (top), y=2. 5 (mid-
dle), and y=0.2 (bottom). One definition of Zener time is the
width of the transition from P+ = 1 to its asymptotic value,
P+ =exp( —z/y). The symbols plotted are points calculated
using the analytic approximations for the profiles, given in the
text.
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K(x) =(1+x ) ' [x+(1+x )' ] (6b)

The solution a+ =K(x)+exp[i'So(x)+/y]/J2 obeys the
boundary condition a+( —~) =1. Since the solution has
an invariant profile when time is measured in units of
6/a, we conclude that the width of the transition and
thus the Zener time scales as 6/a in the adiabatic lim-

23

Both of the above analytic results are in good agree-
ment with numerical calculations of a+(t), as shown in

Fig. 2.
Sensitivity to ac perturbation. —An alternative meth-

od, motivated by the Biittiker-Landauer calculation of
tunneling in real space, consists in introducing an
external ac perturbation in the Hamiltonian and looking
for some characteristic frequency in the response of the
system to the perturbation. Unlike Ref. 24 we identify
zz by employing the concept of a phase shift, 0. We first
consider the sudden limit. We add a perturbation to Hp
of the form H~ =(e/2)sin(tot+0)S„. For rorz &&1 we
expect P+- (ee) to depend weakly on co but to vary with 0
due to the static shift in the coupling: A =A+ e/2sinO.
For rorz) 1 we expect P~(~) to depend on ro. We
determine Tz as the inverse of the characteristic frequen-
cy at which the crossover between the two behaviors

In the adiabatic limit we assume a WKB form for
a+(t). In terms of the dimensionless time x=at/5 we
write a+(x) =E(x)exp[iSo(x)/y]. Substituting in the
Schrodinger equation and equating different orders of y

we obtain

S (x) ~ = ~ —' [ln[x+(1+x')' ']+x(1+x')' '] (6a)
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occurs. We write the amplitudes 0.95 I I I I
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a ~ (t) =a ~ (t)exp (I/ih) E ~ (t')dt'

with E+. =—( ~ ! Ho+HI! +' ). From the Schrodinger
equation we have

a (t) =( —
!H! +)exp (i/6)„(E+ E —)—dt'

Approximating a(t) =1 [recall that P (ee) «1] we

finally obtain

0.90
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0&
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P (~) = —1+—sin0cos + sin 0, (7)A. co

y 4a

which agrees with direct numerical calculations (Fig.
3). We identify a characteristic frequency (a/It'I)'
= rz '. For corz«1 we see that P~(ee) approaches a
constant, which can be obtained directly by inserting d

into Eq. (4).
We have also used the above approach to study a

diFerent ac perturbation, H2 = (e/2)sin(rIIt+ 0)S,. To
leading order in g=e/@co we obtain
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FIG. 3. A plot of the asymptotic Zener tunneling probabili-
ty as a function of the frequency of the perturbation in the sud-
den limit. The solid line is the analytic expression [Eq. (7)] de-
rived for the perturbation HI =(c/2)sin(aIt+0)S„, and the
dashed line is the analytic expression [Eq. (8)] for the pertur-
bation HI =(e/2)sin(cot+0)S, . The parameter y is 20. The
plotted symbols are the results of numerical solutions of the
time-dependent Schrodinger equation for the Hamiltonian of
Eq. (3).

We employ the standard adiabatic approximation

ah, " dg' 2i
exp — [a t ' +4 + e sin(cot'+ 0)]dt'

When | is su%ciently small we expand in g and evalu-
ate the integral using the method of steepest descent.
For rIIA/a we obtain

above assumption it is useful to define
another important time scale: z~, the time interval be-
tween two narrow gaps. (For example, in one-
dimensional rings threaded by an Aharonov-Bohm Aux
r„= to/ II)aIf rz) r„, consecutive Zener events cannot
be decoupled. In this case a full quantum-mechanical
treatment allowing interference between the amplitudes
in each band must be pursued. Moreover, for zz) z&,
the probability of a single event is not given by Eq. (4);
the latter assumes phase coherence over a time greater
than zz. Our analysis allows us to calculate Zener tran-
sitions which take place over a finite time interval.

For an Aharonov-Bohm ring of perimeter = 6000 A. ,
a cross section of 300x 300 A, and a resistance of 10
k Q the decoupling assumption of consecutive Zener
transitions breaks down for a rate of change of the mag-
netic field dB/dt ) 10 G/sec. For a small Josephson
junction with a charging energy on the order of its
Josephson coupling energy =0.5 K, this happens for an
external driving current I & 10 A.

The perturbations H] and H2 above can be realized

7t . COBP+ (ee ) = exp ——2 g sinh sin 0
9 y a

(10)

which, up to a multiplicative factor, agrees with our nu-
merical results. For co '))5/a we find that P+(ee)
does not depend upon co; the perturbation acts as a static
shift in A. For larger values of m the system undergoes
many oscillations while tunneling takes place, and the
sensitivity to 0 vanishes. The crossover from the small-co
limit to the large-co regime defines zz, in accordance
with Eq. (1).

Finally, we comment on some physical applications of
our work. Consider Zener tunneling events between the
first and second band in the vicinity of the narrow gaps a
and b in Fig. 1. It has been previously assumed that
the complex dynamics of such systems can be decoupled
into a series of separate two-level Zener events, each de-
scribed by a Hamiltonian of the form given in Eq. (3)
and a corresponding tunneling probability [Eq. (4)]. To
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P —(~) = —1 —2qcos0sin
A, co (8)y, 4a

which also agrees with our numerical results (Fig. 3).
Again, for rdh/a « 1 the relevant time scale is
= (6/a) '".

We now turn to the adiabatic limit. We discuss a particular ac perturbation that does not modify the adiabatic
eigenstates of the system:

H3=(eHo/2)sin(cot+0)/(a t +d, ) '
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explicitly in experiments. In the case of an ultrasmall
capacitance Josephson junction driven by an external
current source then the application of an additional, os-
cillating current source ' would serve as a perturbation
of the form Hi, while an oscillating external magnetic
Geld would alter the strength of the Josephson coupling
and thereby act as a perturbation of the form 02. Simi-
larly, in the case of Aharonov-Bohm rings, the applica-
tion of an additional oscillating magnetic flux would
serve as a perturbation of the form Hi. The determina-
tion of the Zener tunneling probability as a function of co

would allow a direct comparison between theory and ex-
periment.
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