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Quantum Electronic Conductance of a Terminal Junction

Yshai Avishai ' and Yehuda B. Band
' Department of Physics, Ben Gurion University, Beer Sh-eva, Israel

'Allied Signal Inc. , Corporate Technology Center, Morristown, New Jersey 07960
and Department of Chemistry, Ben Gurion University, Beer Shev-a, Israel

(Received 9 February 1989)

We rigorously treat the quantum-mechanical propagation of a two-dimensional electron gas through
multithermal junctions. The elements R „kI of Buttiker's global resistance tensor are calculated for
ballistic motion. Our results confirm the occurrence of negative resistance observed in recent experi-
ments and predict oscillations of the resistance as a function of ka, where k is the electron Fermi
momentum and a is the geometrical dimension of the junction leads.

PACS numbers: 72. 10.Bg, 73.20.Dx, 73.40.Cg, 73.40.Lq

The quantum-mechanical propagation of particles
through small confined regions, and terminal junctions
connected to these regions, is of fundamental interest
from both conceptual and technological points of view.
In the context of electrical conductance, two-terminal
junctions are quite common; for example, they were used
in the recent beautiful experiments by van Wees et al. '

and Wharam et al. on ballistic motion of electrons
through a narrow constriction which revealed conduc-
tance quantization in units of 2e /h. Three-terminal
junctions occur when a wire is connected to a ring; in the
experiments on the Aharonov-Bohm eff'ect in normal
metal rings, two junctions of this kind occur (the
configuration looks like ~ with the current entering
the ring in one wire and leaving it in the second wire).

Four-terminal measurement of resistance for flat arbi-
trarily shaped samples was described by van der Pauw,
and allows extraction of unwanted geometrical informa-
tion in the determination of the resistivity of a sample.

The importance of four-terminal junctions in conduc-
tance measurements, and their relation to the measure-
ment of the Hall conductance, has been stressed in fun-
damental papers by Buttiker ' which are the impetus for
the present work. Buttiker described how to relate the
resistance tensor of a system with several leads, or termi-
nals, to the quantum-mechanical transmission and
reflection coefficients describing the probability for car-
riers incident on one lead to reach another lead or to be
refiected back into the initial lead. Quantum calcula-
tions of reflection and transmission coefficients for sam-
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FIG. l. Resistance R[234 (in units h/e ) as a function of ka/tt for the empty cross configuration (see inset). Integer values of
ka/tr mark the opening of a new physical channel.

2527



VoLUME 62, NUMBER. 21 PHYSICAL REVIEW LETTERS 22 MA+ 1989

ples with the topological structure of multiterminal junc-
tions have been recently performed in order to study
resistance fluctuations in multiprobe geometries. ' Here
we develop an algorithm, based on rigorous quantum
scattering theory, for the evaluation of transmission and
reflection amplitudes of a system connected to multiter-
minal leads, thereby making possible calculation of the
macroscopic global resistance tensor.

We consider a two-dimensional electron gas where
particle motion is free except for its interaction with the
boundaries of a cross-shaped four-terminal junction (see
the inset of Fig. 1). A charged particle of mass m* and

energy F. propagates through a fourfold-symmetric two-
dimensional cross with each of the arms of width a. For
convenience we put the coordinate system origin at the

bottom left corner of the cross. The energy
E =6 k /2m* and the width a of the cross determine
the number of physical channels, N = [ka/x), for which
the squares of the channel momenta are positive,
k„=k —n x /a & 0. The particle approaches the
cross from the left (region 1) in a definite channel n, and
is reflected back to region 1 (reflection amplitude matrix
R „) and transinitted into regions 2, 3, and 4 (transmis-
sion matrix amplitudes T „, T „, and T „), where
m =1,2, . . . , M )N contains also evanescent waves, i.e.,
closed channels. M, the number of channels retained in
the calculation, is of course finite, but taking M=N may
not be enough to achieve convergence. Our erst task is
to evaluate the transmission and reflection amplitudes.
The electron wave function y„(x,y) has the following
form in each of the four regions:
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In the center of the cross (region 5) we write the wave function as the most general solution of the free-particle
Schrodinger equation in two dimensions (an integral on the energy circle),

2z
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where the functions C„(0) (together with the reflection and transmission matrices) are determined by matching the
wave function and its derivatives on the boundaries between region 5 and regions 1-4. Since the sine functions are
complete on each domain, the matching equations can easily be written in terms of the overlap integrals,

& l/2

f (r)=—2 (3)
a

which decrease in magnitude (albeit slowly) with m. Thus, we obtain the matching equations

(4b)

(4d)
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f 2z 2xf (coso)C„(0)do =T „, k J sino f (coso) C„(0)do= —k T~„,
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Here, m =1,2, . . . , M and n=1, 2, . . . , N. For each physical channel n we have 8M equations for the 4M unknowns
R„,„, T „, T „,and T "„and for the unknown function C„(0). If we replace the integration over 0 by a quadrature
sum with K mesh points, we must require the equality %=4M to obtain a system of equations whose solution can be
determined. Therefore, M must be chosen su%ciently large to allow enough integration points for the integrals to be
accurately determined (remembering that we need M & N anyhow, to allow for evanescent waves). A simple elimina-
tion procedure for each pair of matching equations in Eq. (4) leads to a system of 4M equations in the 4M unknowns
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C„(8;), where 0;, i=1,2, . . . , K=4M, are the mesh
points for the angular integrations. With C„(0;) in
hand, the transmission and reflection matrices are ob-
tained using Eqs. (4) by quadrature. We check the nu-
merical stability of the algebraic equations by monitor-
ing the unitarity constraint,

X k., &IR..I'+
I T.".'I'+

I
T".'I '+ IT".'I'& =k.

(n=1, 2, . . . , N) . (5)
Thus, Eqs. (4) constitute a solution for the reAection and
transmission amplitudes for the four-terminal ballistic
motion case.

The elements of Buttiker's resistance tensor, R „Al,
~here the first pair of indices indicate the contacts used
to feed and draw current from the system while the
second pair of indices indicate the probes measuring the
potential difference, can now be calculated in terms of
the reflection and transmission amplitudes. For ballistic
motion, two elements of R „ I,I are identically zero due
to symmetry (those for which the two terminals in a pair
are not adjacent, e.g. , R~324). This is easily understood
since with this symmetry a current from, say, 1 to 3 can-
not lead to a potential drop between 2 and 4. The
remaining elements with m, n, k, l all different are equal
up to a sign change (occurr'ing when two indices in one
of the pairs are permuted). We calculated R~234 based
on Eq. (12) of Ref. 6, using the coe%cients

Ti3=Z
I
T".'I', Ti2=Z

tl1/7 gg /Pit/

IR .(',
mn k,

and the symmetry relations T
~ 3

= T42 and T ~2 T34 val-
id for the ballistic configuration under consideration:

T13 T12
R12,34 2e 4T~2(N R~ ~

—T~2)—
We plot R~2 34 as a function of the dimensionless param-
eter ka/n in Fig. 1, letting ka/x vary between 4 and 16.
The first remarkable point to be noticed is that R ~2 34 is
positive. Naively, one would expect R&Q 34 to be negative
since if a constant current is maintained between leads 1

and 2, a potential drop is expected between leads 4 and
3. This is schematically represented in Fig. 2, which
shows a current source between 1 and 2, the resultant
potential drop generated between 4 and 3, and a voltme-
ter which measures this voltage drop. Thus, from the
definition of R f243 as the voltage drop between leads 4
and 3 divided by the current between leads 1 and 2, it
should be positive (i.e., R ~2 34 should be negative). From
a quantum-mechanical point of view, however, the fact
that R f2 34 is positive is not surprising. Indeed, T~3, the
transmission coefficient for the straight-through motion,
is larger than T~2, the transmission coefficient for the
curved motion; hence the numerator in Eq. (6) is posi-

FIG. 2. Schematic diagram of current source between leads
l and 2, the resultant potential drop generated between leads 4
and 3, indicated with signs across an efI'ective resistor, and a
voltmeter which measures this voltage drop.

tive. A classical explanation of the negative resistance
R ] 2 34 is as follows (for convenience, let us consider posi-
tively charged carriers). Biittiker's derivation of the
relationship between currents and voltage differences as-
sumes that the currents in terminals 3 and 4 vanish.
However, from the geometry of the cross, it is clear that
when carriers are ejected into the cross from terminal 1,
most of the carriers enter terminal 3. Since th~ current
in terminal 3 must be zero, the chemical poten& .al in this
terminal must be sufficiently high so that the potential
drop between terminals 3 and 4 creates a current to
counterbalance this flow of carriers. Therefore, the po-
tential drop is of opposite sign to that in Fig. 2. %'e
point out that our calculated negative resistance R &2 43 is
in accord with the recent measurements of multiterminal
resistance in high-mobility GaAs-GaA1As heterostruc-
tures by Takagaki et al. who observed a negative resis-
tance in a similar geometry, and their interpretation of
this measurement. Experiments on quantum transport in
an electron waveguide and its dependence on magnetic
field and temperature have also been reported recently. '

The second point to be emphasized is the oscillatory
structure of R~Q 34 which can be understood as follows.
For a fixed number of channels N, the numerator of Eq.
(6) is dominated by T&3 since, in the ballistic regime it is
larger than T~2. The coefficient T~3 increases with ener-

gy faster than the difference R» —
T~& in the denomina-

tor of R ~2 34. However, as a function of N, the dominant
term is (N —R~~ —T~2) occurring in the denominator.
Hence, R ~2, 34 is an increasing function of k in a region of
fixed N while globally it is a decreasing function of k
since N increases with k. The global decrease is of
course expected since as more and more channels be-
come available, the resistance should decrease.

In addition to R ~ 2 34, the two-terminal resistance
R ] 3 f 3 with leads 2 and 4 connected to the sample can
also be measured. This two-terminal resistance is given
by the expression,

V) —V3 h 1

TI2+ T]3
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FIG. 3. Two-port conductance [R~3 |3) ' (in units e'/h) as a function of ka/n for the empty cross configuration.

The two "open" terminals 2 and 4 are not completely
passive but serve as a source for inelastic scattering, and
lead to deviation from the approximate quantization re-
ported in Ref. 1 for a bona fide two-port geometry. We
plot the conductance [R|313] ' as a function of ka/x in

Fig. 3. Clearly, quantization is spoiled, although the step
structure is apparent. Notice also that the magnitude of
the conductance lags behind the number of channels due
to inelastic scattering in terminals 2 and 4.

In the present calculations, it is assumed that the tran-
sition from the leads to the electron reservoirs proceeds
without any additional scattering. The possibility of
scattering near the reservoirs'' is not taken into account.

In conclusion, we have developed a method to evaluate
the elements of the resistance tensor in a four-terminal
junction in the ballistic regime. Reduction of the
method to a three-terminal junction is straightforward.
Calculations employing our method confirm the oc-
currence of a negative resistance observed in recent ex-
periments and the interpretation of this remarkable phe-
nomena, and predict oscillations of the resistance as a
function of ka. Our formulation can be extended to treat
cases in which an impurity potential V(x,y) and mag-
netic field are present. An impurity potential V(x,y)
present in the central region 5 can be treated by using
Green's-function techniques, and if a magnetic field is
present, the wave function in the central region can be
expanded in terms of Landau functions of real nonin-
teger order in analogy with Eq. (2). Hopefully such a
treatment will open the way for realistic calculations of
the Hall resistance, R ~3 24.
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