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Random-Field Mechanism in Random-Bond Multicritical Systems
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It is argued on general grounds that bond randomness drastically alters multicritical phase diagrams
via a random-field mechanism. For example, tricritical points and critical end points are entirely elim-
inated (d ~ 2) or depressed in temperature (d ) 2). These predictions are confirmed by a renormaliza-
tion-group calculation. Another consequence of this phenomenon is that, under bond randomness, the
phase transitions of q-state Potts models are second order for all q at dimensionality d ~ 2.

PACS numbers: 75.10.Nr, 05.70.Fh, 64.60.Kw, 75.50.Lk

Quenched randomness affects phase-transition phe-
nomena in varying degrees. For example, bond random-
ness changes the numerical values of the critical ex-
ponents, and then only if the specific-heat exponent a is
positive in the nonrandom system. ' On the other hand,
field randomness can altogether eliminate the phase
transitions of low-dimensional systems and, otherwise,
always aA'ects the numerical values of the critical ex-
ponents. Thus, the eA'ect of bond randomness has to
date been thought of as less drastic than that of field ran-
domness.

Nevertheless, we predict here that bond randomness
does in fact drastically aff'ect multicritical phase dia-
grams. We identify a random-field mechanism that is
operative in random-bond multicriticality. Accordingly,
both tricritical points and critical end points are entirely
eliminated by bond randomness, in two dimensions and
less (d ~ 2). Another consequence is that q-state Potts
models have second-order phase transitions for all q in

d ~ 2 under random bonds, in contrast to the first-order
behavior occurring for q )q, in pure systems (e.g. ,

q, =4 for d=2). In general, in all dimensions, first-
order behavior cedes to some degree to second-order be-
havior upon introduction of bond randomness.

We follow here the actual sequence of the reported
research. We begin with an a priori intuitive and gen-
eral argument that unveils this random-field mechanism
that is operative in the absence of random fields. We fol-
low by an actual renormalization-group calculation that
confirms the eA'ects. It is demonstrated that tricritical
and critical-end-point phase diagrams are replaced by
purely second-order phase diagrams, which also exhibit
reentrance phenomena. Finally, other consequences of
this mechanism are given, including the major shift in q,
in Potts models and the eA'ect on more exotic multicriti-
cal phase diagrams.

The basic multicritical phase diagrams are found in
the Blume-Emery-Griffiths (spin-1 Ising) model, with
the Hamiltonian

—p'P =Jps;sl+ K ps; s~
—A ps;,

&ij ) &ij) i

where s; =0, ~ 1, at each site i of a lattice, and (ij) indi-
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FIG. l. A multicritical phase diagram is the merger of an
order-disorder phase transition at high density (solid lines) and
a dense-dilute phase separation at low temperature (dashed
lines). Tricritical or critical-end-point phase diagrams result
when the order-disorder transition line reaches the top or the
side, respectively, of the magnetic-nonmagnetic coexistence re-
gion.

cates summation over all nearest-neighbor pairs of sites.
We consider attractive interactions (J,K ~ 0). Note the
two limiting problems in this model.

(1) For 4= —ee, s; =+'1 at all sites, and the model
reduces to the spin- 2 Ising model. A second-order
phase transition occurs at J=J, (e.g., J, =0.4407 and
0.2216 for the square and cubic lattices). When 4 is in-
creased from —~, some sites have s; =0. This weakens
the connectivity of the magnetic interactions, so that we
expect a gradual depression of the transition temperature
given by 1/J, . Thus, a line of second-order transitions
will drop from the point [6=—ee, 1/J, ( —ee)], as seen
on the left-hand side of Fig. 1(a).

(2) As 6/J is scanned at low temperatures (J,b,
—ee), the system will exhibit a simple problem of

phase separation between the magnetic (s; =+'1) and
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nonmagnetic (s; =0) states. Thus, a coexistence region
occurs, as seen in the lower portion of Fig. 1(a).

Multicriticality is the merger of the two pieces of the
problem deduced above. If the second-order line hits the
very top of the coexistence region, a tricritical point
occurs. This happens for K/J (R in the Blume-Emery-
Griffiths model, where R =3 for d=2 and R & 3 for
d & 2. On the other hand, if the second-order line hits
the side of the coexistence region, a critical end point
occurs, as it happens for K/J & R in the Blume-Emery-
Grif5ths model.

Consider now any case of random bonds. One exam-
ple is a quenched distribution P(J) of bond strengths J.
Under scale change (renormalization-group transforma-
tion), this will correspond to a quenched distribution
P(J,K,A) of all even (spin-reversal invariant) interac-
tions in the thermodynamically equivalent rescaled sys-
tem. Consider the isolated point C in Fig. 1(b). This is

the critical point of the limiting problem (2) discussed
above. The randomness P(J,K,j)) mixes points in the
coexistence direction subtending C [the direction of the
dashed line in Fig. 1(b)] with points outside the coex-
istence direction. In other words, the randomness has
components orthorgonal to the coexistence boundary.
Thus, the randomness P(J,K,A) acts, on C and its sub-

tending coexistence line, just like field randomness.
In more physical words, h, is the chemical-potential

difference between magnetic and nonmagnetic states.
The value of 6 in the coarse-grained (renormalized) sys-
tem clearly depends on the value of the bond strength J
in the underlying more microscopic (unrenormalized)
system. Thus randomness in J induces under scale
change (renormalization) randomness in h. Finally, the
chemical-potential difference 4, acts as a field on the
phase separation critical point C.

Accordingly, C is depressed in all dimensions. It is

depressed to zero temperature, and entirely eliminated
with its subtending coexistence line, in d(di. Since C
with its subtending coexistence line is a phenomenon of
magnetic-nonmagnetic phase separation, also known as
dense-dilute phase separation, it is in the universality
class of the (n =1)-component spin systems, with di
=2. Thus, component (2) of multicriticality, as ana-
lyzed above, disappears for d(2. Component (1), the
second-order line, reaches zero temperature. The mul-
ticritical phase diagram, whether tricritical or critical
end point, is eliminated.

If we think of the global phase diagram in the (J,K, A)
space, we realize that C is in fact part of an isolated
critical line, parametrized by K/J and subtended by a
surface of coexistence. The randomness P(J,K,A) of
course still has components orthogonal to the coexistence
surface, and the above reasoning holds.

In the global phase diagram in (J,K, A) space, the
second-order line of component (1) above is in fact part
of a second-order surface parametrized by K/J. It is
subtended by a region of coexistence with the full dimen-
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FIG. 2. EAect of bond randomness on a tricritical phase dia-
gram. The curves are for the pure system. The solid circles
are the phase-boundary points for the random-bond system
with P(ji) = [8(j—cr) +6(j+o)]/2, o =j/4. The lowest
phase-boundary point is split, because of the more than 14-
digit accuracy in chemical potential needed to reach the phase
boundary from either side [see Fig. 3(b)].

sionality of all even interactions. Thus, the randomness
P(J,K, A) does not have components orthogonal to this
coexistence locus. This is why no random-field mecha-
nism is operative on component (1) of would-be multicri-
ticality. Thus, component (1) survives bond randomness.

We have checked this a priori argument by perform-
ing an actual renormalization-group calculation. The re-
cursion of the quenched probability distribution under
rescaling is' ''

bd

P'(V') =„QdV; P(V; ) 8(V' —R([V; })),
(ij )

where V;j:—(Jj,K;, ,5;,Aj), R is a local recursion rela-
tion, b is the length rescaling factor, and primes denote
the rescaled system. For the local recursion relation, we
have used the Migdal-Kadanoff approximation in its lo-
cally differentiating form, which correctly produces the
lower-critical dimension of the random-field problem. ''
Here, it yields four local renormalized interactions from
4b different local unrenormalized interactions as argu-
ments. We have parametrized P(V) with sixteen histo-
grams. ' '' From the study of the fixed points and global
renormalization-group flows, we have determined phase
diagrams. Densities have been calculated via the ap-
proximate recursion formula '

n=b "n' T,
where
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constant per bond &ij), and n is the conjugate densities.
The curves in Fig. 2 show a tricritical phase diagram

of the pure system in d=2, calculated as described
above. When the bilinear coupling J (see the first equa-
tion of the paper) is randomized according to the
quenched probability distribution P(Jy) (which consti-
tutes the initial point of the renormalization-group tra-
jectories), the phase-boundary points given by the solid
circles are obtained. As predicted, the tricritical point
and the ferromagnetic-nonmagnetic coexistence region
are eliminated. We have checked, in temperature-
chemical-potential space, that the second-order phase
boundary reaches zero temperature. Furthermore, as a

surprise result, Fig. 2 shows reentrant behavior: For a
range of densities, as temperature is lowered, the system
first passes from the paramagnetic phase to the fer-
romagnetic phase, then from the ferromagnetic phase
back to the paramagnetic phase.

Previous renormalization-group work' on the 1=2
random-bond Blume-Emery-Gri5ths model had seen a
depression of the tricritical temperature. However, the
full effect, namely the total elimination of the tricritical
point, was not seen because the randomness generated
for the renormalized 5 was approximated away in the
previous work.

The curves in Fig. 3(a) show a calculated critical-
end-point phase diagram of the pure system in d=2.
Again, when bond randomness is introduced via the
quenched probability distribution P(JJ), the phase-
boundary points given by the solid circles are obtained.
The triangles show our determination of one of these
points, by successive bisections of a chemical-potential
interval straddling the boundary. These triangles explic-
itly show homogeneous-phase existence in what was a
coexistence region in the pure system. Under bond ran-
domness, the critical end point, the isolated critical point,
the ferromagnetic-nonmagnetic coexistence region, and
the paramagnetic-nonmagnetic coexistence region area
all eliminated. We have again checked that, in temper-
ature-chemical-potential space, the second-order phase
boundary reaches zero temperature.

We have repeated the same calculations for 1=2.58
and 1=3. Although depressed in temperature, the tri-
critical point and the critical end point survive bond ran-
domness in both d ) 2 systems, as predicted.

The argument given in this paper clearly applies to all
tricritical and critical-end-point phase diagrams, includ-
ing discrete or continuum n-component spin systems, an-
tiferromagnets and metamagnets, etc. Thus, the lower-
critical dimension dI for random-bond tricriticality and
end-pont criticality is 2. As d is increased from di =2,
tricritical points and critical end points emerge from zero
temperature.

The application to Potts models has further-reaching
significance. The renormalization-group theory of q-
state Potts models encompasses the extended space of the

FIG. 3. (a) EAect of bond randomness on a critical-end-
point phase diagram. The curves are for the pure system. The
solid circles are the phase-boundary points for the random-
bond system with P(JJ ) = [8(J—a) +8(J+a)]/2, a =J/4.
The triangles show our determination of one of these points, by
successive bisection of a chemical-potential interval straddling
the boundary. These triangles explicitly show homogeneous-

phase existence in what was coexistence region in the pure sys-
tem. (b) Calculated isotherm of the random-bond system, cor-
responding to the bisections exhibited in (a). The solid circle
gives the phase-boundary point. In the pure system, this iso-
therm has a density jump from (s; ) =0.971 to 0.058.

ordered

I
I

I IG. 4. Bond randomness should convert a bicritical phase
diagram (a) into a disorder-line phase diagram (b) or a
decoupled-tetracritical phase diagram (c), by the random-field
mechanism discussed in this paper.
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Potts lattice-gas model. ' In this space, as q is increased,
critical and tricritical fixed points merge and annihilate
at q„ leaving way to first-order transitions for q & q, . '

In the present case, in d ~ 2 random bonds eliminate the
tricritical fixed point, so that the merger and annihilation
cannot occur. Again, the random bonds act as random
fields (random chemical potentials) on the eAective va-
cancies that would otherwise cause the first-order transi-
tions by their condensation. ' Thus, in d=2, although
the pure Potts models have first-order transitions for all

q & q, =4, the random-bond Potts models have second-
order transitions for all q.

This random-field mechanism of random bonds is also
applicable to more exotic multicritical phase diagrams.
For example, Fig. 4 shows how a bicritical phase dia-
gram is affected.

Finally, we note that in a parallel work, Aizenman and
Wehr' have rigorously shown that the q-state random-
bond Potts models have no latent heat in d ~ 2. Their
work and ours were completed independently and are
supplementary to each other: Reference 17 is cast in the
general context of the vanishing of the discontinuities in
the thermodynamic densities; our work draws on phe-
nomenological arguments and approximate renormaliza-
tion-group calculations to infer the second-order nature
of the transition.
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