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Rounding of First-Order Phase Transitions in Systems with Quenched Disorder

Michael Aizenman '
Courant Institute ofMathematical Sciences, New York University, 251 Merce~ Street, New York, 1Vew York 10012

Jan Wehr
Department of Mathematics, Rutgers University, 1Vew Brunswick, New Jersey 08903

(Received 17 January 1989)

In 2D, quenched randomness results, quite generally, in the elimination of discontinuities in the densi-
ty of the variable conjugate to the fluctuating parameter. Analogous results for systems with continuous
symmetry extend to d ~ 4. In particular, for random-field models we rigorously prove uniqueness of the
Gibbs state in 2D Ising systems, and absence of continuous symmetry breaking in the Heisenberg model
in d~4, as predicted by Imry and Ma. Another manifestation of the phenomenon is found in 2D
random-bond Potts models where a phase transition persists, but ceases to be first order.
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We report here on general results' concerning the
thermodynamics of systems with quenched disorder.
The main focus in this Letter is on a rigorous proof that
in d ~ 2 dimensions the presence of random Auctuations
in the structural parameters results in the suppression of
first-order phase transitions, i.e., elimination of discon-
tinuities in the thermodynamic expectation values of the
conjugate quantities. Discontinuities related to continu-
ous symmetry breaking, as in the Heisenberg model at
vanishing external field, are eliminated by arbitrarily
weak quenched disorder even in the higher dimensions:
d «4. Our analysis of these phenomena is tied in with
some general results on the Auctuations of extensive
functions of random couplings (such as the free energy)
which apply in all dimensions. Some of the further ap-
plications of the method are mentioned at the end of the
Letter.

A particular manifestation of the rounding of the
first-order transitions in 2D is seen in the ferromagnetic
random-field Ising spin models (RFIM), for which the
persistence of a phase transition (at weak enough disor-
der) in d & 2 dimensions has now been rigorously estab-
lished. The early prediction of this effect was given by
Imry and Ma, on the basis of the heuristic argument
that the state of such a system is determined by the com-
petition of the random field, whose cumulative effect on
a uniform spin configuration in a region A = [ L,L] is-
of the order

~
A

~

'I =L"I, with the symmetry-breaking
mechanism, whose strength is of the order of the bound-
ary

~
8A

~

=L '. For the marginal case of d =2 dimen-
sions, the prediction has been that the Auctuating field
will have the dominant effect. If the distinct phases are
related —in the absence of the quenched disorder —by a
continuous symmetry, soft modes reduce the effect of the
boundary conditions to L",and hence the marginal di-
mension is d =4.

The insufficiency of the above appealing argument be-
came evident when a need arose to decide between its
prediction and that of a "dimensional-reduction" princi-
ple, which suggests a higher value for the lower critical
dimension of the RFIM. The resolution of the impasse

required a series of rigorous works —starting with Ref. 4,
and culminating with Imbrie and Bricmont and Kupia-
ninen —which prove the stability (under weak disorder)
of the Peierls mechanism (of symmetry breaking in the
ground state, and at low temperatures ) in d &2 di-
mensions. The methods employed there could not, how-
ever, establish the disappearance of the symmetry break-
ing in 2D, which the results reported here prove for arbi-
trarily weak random fields. Though that part of the
Imry-Ma prediction was not challenged by the alterna-
tive argument, it has been argued that it also deserves
rigorous study —in particular since it concerns a qualita-
tively distinct nonperturbative effect.

Another example of the rounding of a first-order phase
transition is the suppression of the discontinuity in the
energy density in random-bond Potts models. In this
case, if the couplings remain ferromagnetic (or just
"sufficiently" so ), the effect is just a change in the order
of the transition, since at low temperatures the model ex-
hibits symmetry breaking, and long-range order, even in
the presence of randomness. The vanishing of the latent
heat was also independently noted in a parallel work of
Hui and Berker, where it is derived —along with some
further information on the nature of the phase tran-
sition —by renormalization-group (nonrigorous) argu-
ments.

Our analysis is based on the consideration of Auctua-
tions. The problem at hand may be presented as a ques-
tion of the vanishing of an order parameter, M. The ar-
gument rests on the observation that the nonvanishing of
M carries the implication that some finite-volume quan-
tity, GA, exhibits Auctuations which exceed an upper lim-
it set by some other considerations. A contradiction is
avoided only if M=O. The basic argument requires a
certain refinement in the marginal dimensions. That
strategy may be useful for a variety of problems.

To make the general notation transparent, let us start
with some examples. In all cases, we consider systems of
variables tT= la„j located on a d-dimensional lattice, say
Z, whose Hamiltonian is a sum of a translation-in-
variant, nonrandom, interaction and a Auctuating term

2503



VDLUME 62, NUMBER 21 PHYSICAL REVIEW LETTERS 22 MAY 1989

and

A(e'") & ~ for all
~
s

~
& ~ .

(2)

E.g. , g may be Gaussian; however, the reAection symme-
try is relevant for us only in the discussion of the con-
tinuous symmetry breaking in 2 & d (4.

(ii) Random-bond (RB) q-state Potts models, with cr

taking values in [1, . . . , qj and the Hamiltonian having
the form of either

with quenched randomness —represented here by a col-
lection of independent random variables [rlj with a trans-
lation-invariant distribution.

(i) Random-field (RF) models, ' with bounded spin
variables (

~
cr,

~

(S & ~) and the Hamiltonian

H(cr) =
p g J» —rcr»' cry g(h+e17») cr» .

x,y

In the ferromagnetic RFIM, a are Ising spins and
J, ~ 0 (that condition is not relevant for the main result,
though it does play a role in the translation of the lack of
discontinuity in the magnetization to a statement on the
uniqueness of the Gibbs state). In O(N) models (N=3
for the Heisenberg model), cr are ¹omponent unit
vectors, with the rotation-invariant a priori distribution.
In that case the center dot in (1) represents a scalar
product.

In the RF models the spins are subjected to a Auctuat-
ing magnetic field which is presented as a sum of two
terms: one uniform (h), and the other random, with the
order of magnitude of e. The random fields (N-dimen-
sional vectors) are independently distributed, with a
probability measure v(dry) about which we assume [with
average denoted by A(f):ffv(dg)]:—

A(~) =0, A(~') )0,

spins arranged on a lattice, with a Hamiltonian of the
form

H(cr) =Hp(cr)+gg(h +e g, ) ' g (T„a), (6)

where the index e may parametrize pair-interaction
terms of given range or other multiple-spin terms, g, are
bounded functions of the spin configuration, T are the
translation operators (not to be confused with the tem-
perature T= 1jp), and rl, „a collection of independent
random variables, satisfying the conditions (2), with an
identical distribution within each a class. The questions
we address relate to the properties of the infinite-volume
Gibbs states (of the variables cr) for typical configura-
tions of the parameters [rl, j.

Bulk properties of random systems are related to the
free energy, F, which is derived from the finite-volume
partition functions Z&. By standard arguments, for al-
most every configuration of the parameters [il, ,j, the
latter converges in the thermodynamic limit to a nonran-
dom function: "

lim lnZA(T, [hj, jej, jrlj) =F(T, [hj, [ej) . (7)
A = [ c,L]'—.

The free energy is convex in lh j, for fixed T and [ej, and
hence it has directional derivatives. Any discontinuity of
those corresponds to a first-order phase transition. One
has, therefore, the following family of natural order pa-
rameters:

M. (T, jhj, [ej)

or

H, (~) = ——,
' g(J„,+e, ,q. ,)a

x,y

Hp(cr) = ——' $(1+eg +eil )J„6
X,y

=Hp(cr) —$eq„$J„r6
X

(3)

(4)

1

2 cl(h, +0)

The definition of M has a natural extension to zero tem-
perature, T=O, with F(T=O, . . . ) interpreted as the
ground-state energy density.

In the case of the ferromagnetic RFIM, model (1),

It is always assumed here that the distribution of the
random parameters [qj is translation invariant. In the
case of Hj that means that the g's form a number of
classes —one for each value of z =x —y, with members
of each class being identically distributed and also shar-
ing a common strength parameter e, .

(iii) Spin-glass models, such as the Ising model with
the Hamiltonian

H(o-) = —
—,
'

rb r cr„cr, —g(h+ eq„)o, , (5)
)x —y =1 x

which is of course not unrelated to (3). Here the inverse
temperature (P) is akin to a second e parameter.

In general, and unifying terms, the models consist of

M(T, h, e) = —,
' [A((~p)„+)—A((~p)„)],

where ( ) l„l ~ are the two well known extremal
Gibbs states ("pure phases") constructed via standard
choices ("+" or "—") of boundary conditions. These
two states bracket all other Gibbs states (in the sense of
Fortuin, Kasteleyn, and Ginibre' ), with the implication
that if M(T, h, e) =0 then, at those values of (T,h, e),
the Gibbs state is unique for almost every realization of
[q.j.

The following is our main result for the general case:
Theorem J.—In a (d (2)-dimensional system with

quenched disorder, with a Hamiltonian (6) satisfying the
decay condition (12) (stated below), and with a continu-
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ous (i.e., "nonatomic") probability measure v(dq),

M, (T, fh}, jej ) =0 for all T~ 0, fh}, tf. j, and a for which f., & 0. (io)
In the Ising and Potts ferromagnetic RF and RB models,
(10) holds at T & 0 regardless of the continuity assump-
tion on the random-field and coupling distribution v(drj).

For the ferromagnetic RFIM a rather direct implica-
tion (by the Fortuin-Kasteleyn-Ginibre' domination ar-
guments) is that in two dimensions at any fixed magnetic
field h (in particular h =0), and temperature T & 0, for
almost every random-field configuration leg„j (with
f. & 0) the system has a unique Gibbs state. If the prob-
ability distribution v(dpi) is continuous then H has also a
unique infinite-volume ground-state configuration. Fur-
thermore, when h and T are varied with fey, j fixed, then
almost surely the system has no bulk first-order phase
transitions at T ~ 0, with the case T=0 subject to the
above restriction. (A bulk first-order phase transition
occurs when a system has distinct Gibbs states which
differ on the translation-averaged expectation value of
some local quantity. See Ref. 2 for further discussion. )

Thus, the situation for e& 0 is drastically different
from the case f. =0. The restriction to continuous v(dii)
is not totally superliuous at T=0 (though it could be
eased), since in the RF model if v(dg) has a discrete
co
gl 0

L

degeneracy. On the other hand, for T &0 we expect
that restriction to be unnecessary even in the general
case.

The models to which Theorems 1 and 2 (below) apply
include systems with long-range interactions, limited by
the conditions suggested by the heuristic Imry-Ma argu-
ments. For pair interactions, with J ~ falling off by a
power law, we require (in both theorems)

f
J —~ f

~ const/ f x —y f

In stating the general assumptions for Theorem 1 we use
the following notation. For a function y(o), and A a
subset of the lattice, we denote the amplitude of the
dependence of y( ) on the spins in A by 6A y
=supjy(a) —y(a')

f a„.=aA j. Our condition on the
Hamiltonian (6) is that for rectangular regions A

G„Ho, g 6 .g, (constx
f
A

f

'i,
a;xGA

where Ho.~ is that part of Ho which involves spins in A.
E.g. , in the often used representation'

mponent then at least for certain values of t. &0 the Ho= Z yA(aA)
und state is typically nonunique —with a macroscopic

the first of the two conditions in (12a) is

sup f yA(o) f
(constxL i /L =constxLdiam(A)

A E O, diam(A)) L
(»b)

and a similar statement can be made for g.
The general statement derived in Ref. 2 on the inhibiting effects of quenched disorder on the continuous symmetry

breaking includes the following:
Theorem 2.—In the O(N) random-field models, with measures v(dg) which are symmetric under the reliection

ii —q, with continuous projections on each line [i.e., for each fixed N-dimensional vector M and each real r,
v(jf7 M=rj) =0]

(i6)

M (T,h =0, f. ) =0 for all T)0, E & 0,
provided J„—~ satisfies (11) and the dimension is d ~ 4.

We shall not give here the full details of the proof of Theorem 1, but instead outline the main steps in the context of
the ferromagnetic random-field Ising model. For that model our GA(T, h, furl}) is very similar to the diA'erence in the
free energy between the + and the —boundary conditions:

G&=TlnZA+(T, h, jag})—TlnZ& (T,h, furl}) .

We choose to consider a quantity constructed in a seemingly more complicated way, since that construction yields some
very convenient translation-invariance properties. The definition of GA for the general case is somewhat more involved;
however, even for the general case it is possible to construct G& satisfying all the properties which are essential for the
argument described below. For the RFIM we define

G„( fhTf, fe=pf—fle(exp P g ep o e
———le exp P g ep o e, +, (i4)

xEA xEA

where one should note that the terms in the exponents cancel out similar terms present in the Gibbs factors of the states
( . &„+-. By that observation, for each x E A

e ' BGA/Bii„= —,
' l(a„&„,+ —(cr„&„,—],

and hence, using (9),
A(BGA/Bit„) =eM(T, h, fein}) .
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We shall now describe two conflicting bounds on the magnitude of fluctuations of GA. The first observation is that for
short-range interactions, GA has the order of magnitude of the boundary,

G.(T,h, (eq})
with some finite constant A.

The "a priori" bound (17) will be contrasted with an implication of (16)—which may be taken to suggest that if the

order parameter M does not vanish then the quantity G& has significant fluctuations, with variance of the order of the
volume

i
A i. More precisely, the combination of (16) with general variance bounds presented in Refs. I and 2, leads to

~(G'/I A i )) "02(M) . (18)
~+ f —1,1 j'

with the v-dependent function
r

(17)
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e,(m) =inf' „(dt))g(t7)' g c C', ig'( ) i
~ I, „v(dtl)g'(tI) =m '. (19)

The most relevant property of 9 is that, for any continuous probability measure v, 0,(m) is strictly positive at me0. (A
separate argument is required for the discrete case. )

In d=2 dimensions the bounds (17) and (18) are consistent only if either M=O, or if the quantity GA manages to at-
tain (with non-negligible probability) the order of magnitude 0( i A

i

'i ) without ever exceeding a certain multiple of

i
A

i

't . One may expect that feat to be rather difficult for an extensive quantity, since its distribution may share some

qualitative features with the Gaussian. In fact, we have also derived the following significantly stronger bound (valid in

any dimension), whose relation to (18) is in the spirit of the last comment:

ltm A(exp(tGq/l Ai ' ))~ expt z t e 0, (M)] for all t) 0.
~ =[—z,L]'

L~ oo

That bound is plainly inconsistent with (17), unless
M=0, since (17) implies (for d=2, and regular A)

A(exp(tGA/iAi ' )) (exp(tA), for all t) 0. (21)

Hence Theorem 1, for the finite-range RFIM. For long-

range interactions, the bound (17) may not hold; howev-

er, condition (12) assures (for 1=1,2) that GA is still of
the order 0( i A i

' ), which is what matters here.
Our derivation of Theorem 2, concerning systems with

a continuous symmetry, is based on a combination of the
above method with a Herring-Kittel-type' argument, as
elucidated by Pfister ' in his rigorous proof of the classi-
cal Mermin-Wagner ' phenomenon.

References 1 and 2 also contain some useful general

results on the nature of the fluctuations of extensive

quantities, and further applications of the approach

based on their study. The applications include a proof
(restricted to d =2 dimensions) that all the ground states

of nondegenerate 2D spin-glass models [with continuous

v(. )) are regionally congruent, in the Fisher-Huse'

sense.
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