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Elastic Eff'ects in the Phase Transition of Polymer Solutions under Shear Flow
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We introduce a tensor variable to describe chain deformations in the continuum limit. Then we set up
a dynamic model and apply it to the problem of phase separation in polymer solutions under shear.
EAects of chain deformations are shown to be crucial in the entangled case. A large shear-demixing
eA'ect is found in semidilute solutions in agreement with experiments.

PACS numbers: 61.25.Hq, 62. 10.+s, 64.60.Ht, 64.70.3a

The phase-separation behavior in polymer solutions
can be drastically altered by shear flow. In particular,
two groups' reported that flowing polystyrene solutions
with high molecular weights of 2&10 became turbid at
temperatures much higher than the spinodal (cloud
point) temperature of quiescent solutions. The spinodal
temperature shift thus obtained, (AT)„would be several
tens of degrees in the semidilute region, increasing
strongly with increases of the molecular weight M, the
volume fraction p, and the shear rate S. The effect be-
comes small and complicated if the polymer volume frac-
tion p is close to the critical value p, and the molecular
weight is moderate. ' On the contrary, a large effect of
shear-induced dissolution (extension of the one-phase re-
gion) was observed in mixtures of polymer plus polymer
plus solvent. ' In such ternary systems large eff'ects of
shear are rather natural because the order parameter is
the relative composition between the two polymers and
its time scale is very slow. However, the large size of
(hT), in polymer plus solvent systems is really surpris-
ing in view of the much faster time scale of the relative
collective motion between the polymer and the solvent.

It has been expected that, when chains are deformed
in shear flow, some elastic effect should come into play to
change the spinodal temperature. However, it has been
difficult to construct a statistical-mechanical theory for
such an effect because the polymer solution is far from
equilibrium in shear. So far several authors developed
thermodynamics in the presence of shear' ' assuming a
generalized Gibbs free energy of mixing, which consists
of the ordinary Flory-Huggins mixing free energy and an
elastic free energy stored in the system due to chain de-
formations. This thermodynamic approach, however,
contains serious ambiguities, mainly because it has no
firm theoretical basis, and led to some confusing results.
The aim here is to present a dynamical model which de-
scribes the phase transition of deformed polymers in sol-
vent. Our principle is that physical properties in steady
states should be studied by seeking and examining sta-
tionary states of such a dynamic model as in the case of
low molecular weight binary mixtures under shear. '

Flow effects on phase separation are still poorly under-
stood in the polymer case, but their study will become in-

creasingly important in the future.
Before presenting our theory we give a crude argu-

ment as to why the elastic eff'ect can be important in

semidilute solutions. Let f, ~ be the elastic free energy
per unit volume stored in deformed chains, which are as-
sumed to be elongated to a length R(~ =XRp in one direc-
tion in a 0 solvent. Here Rp =aN ' is the equilibrium
size, a being the monomer size and N being the polymer-
ization index. Then the stored free energy per chain is

2 ktt?7. in the dilute case, p & p, as is well known. "
On the other hand, it is —,

'
ktt Ti N/N, in the semidilute

case, p & p*, for mild deformations, k & 1. Here N,
(-p ) is the monomer number between two consecu-
tive entanglements with other chains and p* =N 't is
the overlapping volume fraction. '' Then, multiplying the
chain density a t/t/N to these estimations, we obtain

f, i
—ktt TER

Here E —a P/N for P& P* and E-a p for p& p*,
as it should be (since ktt TE is the elastic modulus due to
polymers''). On the other hand, the mixing free energy

fo in the Flory-Huggins theory is written for p «1 in the
form"

f0= kttTa [N 'P—in)+( —,
' —g)p + 6 p + 1, (2)

where g is the interaction parameter. For p* & p « 1 the
shift of the spinodal curve will be determined by a bal-
ance of f,~

and the second term in the square brackets of
(2). This leads to

~ (Ag), ~

—a EA, /p —pX, where
(Ag), is the spinodal value of Ag= 2

—g. In the mean-
field theory we have N 't hg = (T —Te)/(Te —T, ), where
To is the 0 temperature and T, is the critical tempera-
ture. ' ' Thus, '

(3)

In shear flow X is of the order of the dimensionless shear
Sr, r being the very long rheological (disentanglement)
time. ' The right-hand side of (3) can well be several
tens of degrees if X is not too small, because
To —T, =4.5 x 10 M ' deg in polystyrene cyclohex-
ane. '"

Next we proceed to explaining our theory. When
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chains are deformed, it is convenient to introduce a new

gross variable representing the degree of internal anisot-
ropy as in the case of liquid crystals. Hereafter we re-
strict ourselves to the semidilute case p & p*. Let
R]',R2, . . . be consecutive entanglement points on the
ath chain. They are envisaged as slip links through
which the chain can pass freely. ' We introduce the fol-
lowing tensor for the ath chain:

1
W~j =

2 g (R('+( —R(') (R('+( —R( )qNe (=i (4)

where g is the number of entanglements on the eth
chain. Then we divide the space into cells with linear di-
mension Io much longer than the polymer size N't a.
For each cell n we define

(s)

In the continuum limit we find

where summation is over chains in the cell n and N~(n)
is the chain number in the cell n. Our definition of 8;J.
is analogous to that of the order-parameter tensor for
liquid crystals. ' In equilibrium we assume that the vec-
tors R~+~ —RI' are independently Gaussian with vari-
ance N, a, where N, —p . Then, for a given chain dis-
tribution [N~(n)], we have (W~. (n)) =0 and

'B..(B;aB,(+B(B,k),
where N, „(n) =Np(n)N/N, is the number of chain parts
between two entanglements in the cell n. The distribu-
tion of O';J tends to be Gaussian as the cell size increases
such that N, „(n)»1. The free-energy increase due to
deformations is thus given by

F,(/kt(T = —,
' QN, „(n)W~(n)

independent variables. The equations for p and v are

p = —V (pv) +XoV ((uo+ pe() +0 (io)

irrespective of the details of the dynamic equation for
W~. . In this paper, in analogy to the dumbbell model,
we assume the following simple dynamic equation for

p v= —
V~

—pV Fo+V o+q, V v+g,6
Bt

where po+p, ~ is the chemical-potential diA'erence be-
tween the polymer and the solvent consisting of the usual
part po =BFo/Bp and the elastic part

p, ~

= F,(
= —„' k((T(BE/B&)Tr(W ) .

6
By

The ko and g, are the kinetic coeKcients related to the
power spectra of the random source terms 8 and ( via
the fluctuation-dissipation relations. From the scaling
theory Xo —a /6(r(i, for p& p . The incompressibility
condition V v =0 is imposed and is assured by the pres-
sure p. a is the stress tensor due to chain deformations
to be defined in (15) below. If p, ( and cx are absent, the
above equations reduce to those for the usual critical
fluids. ' Our key assumption here is that the elastic con-
tribution appears only in the chemical-potential dif-
ference in the equation for p. This has not been fully
justified at the present level of the study, while there will
be no objection to (11).

The relaxation time i of 8';J is the rheological time
given by z(, (N/N, )', where rb =6zrbg /kt(T is the re-
laxation time in a single blob with size ( =a/p (the dis-
tance between entanglements)" and a =3.4 experimen-
tally. ' When the velocity gradients Do =Bv;/Bxj are
weak and nearly stationary, we should have

W() = r[D(~+Dq(],

F,(/k((T = —,
' dr E TrW

where E is defined in (1). This is the stored free energy
in our scheme. The distribution exp( F,(/kt(T) sure—ly
gives rise to the variance (6). The above form for F,~

will be used for macroscopic deformations, although it
has been derived for small fluctuations. This will be al-
lowable for Sr~ l. It should also be noted that, just
after an infinitesimal a%ne deformation, r r+6A r,
we have (W~~) =BR;~+BR~;. We may call W the defor-
mation tensor.

The total free energy F is the sum of I"',
I and the usual

free energy Fo for p and the velocity field v:

+v V W;~ =D;~ +D~; +g (D;(, Wk~ +D~k Wk; )

—r 'W;J. +f;i (i4)

where the first four terms represent the deformation by
flow ' and f;, ( =f~; ) are random source terms. We
surely obtain (13) in steady, weak shear if f~ are
neglected.

Note that the reversible terms on the right-hand sides
of (10), (11), and (14) must ensure that the equilibrium
distribution be given by exp[ —(Fo+F,()/kt(T]. Then
the form of the stress tensor o is uniquely determined as

Fo= dr[fo((t(, T)+ q K(V(t() + —,
'

pv ] . (9)

Here K —kt(T/ap from the scaling theory'' and p is the
mass density assumed to be constant. We then set up
dynamic equations for W~, p, and v regarding them as

=EW() +Eg W k W(,J. + 4 (E —(t(E') (TrW )BJ .
k~T

(is)
Here only the first term will be important together with
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(13) and the specific details of (14) are irrelevant in the
following discussion for weak shear. From (13) the ex-
cess viscosity Ag in the zero-shear limit turns out to be

4g =kgTEr.

geneous disordered state under a simple shear (v)
=Sye„, e being the unit vector along the x axis. We
neglect the nonlinear couplings among the fluctuations
and the random source terms. Namely, we are in the

16 mean-field scheme. Retaining only the first term on the

Now let us consider small fiuctuations around a homo- right-hand side of (15) and using (13), we obtain to first
order in the deviations,

o~j =(aq)V v„+g(wti)' y) (v, )+ (v;)
a . . = 2

, Bx, j xj x( . Xj

where v~ =v —(v), p~ =p —(p), and (hq)'=8(hri)/6&. Notice that the time scale of v~ is much faster than that of p~

and we are allowed to set Bv/Bt =0 in (11). If use is further made of V. vt =0, the Fourier transform of v& may be re-
lated to that of p~ in the following form:

(v~~)k=ik»(1 —2k„)k gq, (v~»)q=ik, (1 —2k»)k gq, (v~, )k= —2ik, k, k»k gq.

Here gq=(Sti'/q)p~k, g=ti, +dry, and k=k 'k represents the direction of the wave vector. Thus v~ arise from the
concentration dependence of d q. Then (10) may be linearized as

Bt Bk»
Sk~ P]g = (XpkgT)k [f"+2) g(k)+Kk ]P~k, (i9)

where S= iS is the dimensionless shear and

g (k ) = —,
' E "+E'( r'/r —q'/rt ) + (E'q'/ri) (k, +4k, k» )= (6E/p ) [ —1 +a (k, +4k„k» ) ] for P » p* . (20)

The primes denote the differentiation with respect to p
and q'=(Aq)'. The second line of (20) has been ob-
tained by assuming g a: (Np ) ' and E CX: p, whereas the
behavior near the critical point is not simple.

Because the fluctuations with k ~0 are eventually
suppressed by shear, ' the instability is first triggered by
the fluctuations varying only in the y axis. Using the
Flory-Huggins form (2) for fp, we find a very large
shear-demixing effect for p considerably larger than p*,

(aT), = ,' A, (T, T)(y y/—*)2) 2&—0, (2i)
where A, =6a E/p —1. This is consistent with (3).
The origin of this eA'ect is rather simple. Against fluc-
tuations varying in the y axis, the shear stress a ~ is fixed

up to first order in the deviations. Then the elastic
chemical potential p, ~

in (10) is a decreasing function of
P and jp,~/8& &0 because p,~a:p o„». This leads to
enhancement of the fluctuations varying in the y axis. It
should be stressed here that our scheme is inapplicable to
the case 2) & 1. In the semidilute case this regime is
characterized by the non-Newtonian viscosity, ' where E
and r would also depend on S. '

The scattering amplitude Iq =(
i pq i ) can be calculat-

ed if the random source term 0 in (10) is recovered on
the right-hand side of (19). We write the equation of Iq
in a dimensionless form by introducing q =gk, I(q)

Iq, and r* =1 —A, 2) + (1 —2g)/p with g =a/P:

[2q [r*+aA, (q, +4q, q»)2) +Kpq ]
—rbSq» 8/Bq»]I(q) =2q, (22)

where Kp=a&K/ktjT —1, a=3.4, and q=q 'q. The

I(q) =1/[r*+aA, (q, +4q q»)2) +Kpq ] . (23)

The general behavior for q (q, is complicated and is the
subject of future study. We only remark that the elastic
eff'ect enhances the fluctuations in the y axis, while it
suppresses those in the z axis.

Also interesting will be domain structures emerging
below the instability point. They should be crudely
lamellar, consisting of fat thin droplets, due to the angle
dependence of g(k), Eq. (19), and the elongation by
shear. The two phases will be a nearly pure solvent and
a semidilute solution. Recall that, when the viscosity in-
side a droplet is much smaller than that outside the
droplet, it can be greatly elongated into slender shapes
before its breakup in shear. ' A dynamical balance will
be eventually attained between the droplet growth due to
the phase separation and the breakup mechanism by
shear. Schmidt and Wolf observed that the macro-
scopic viscosity decreases abruptly after demixing in
polymer-solvent systems. They considered that droplets
with a low viscosity act as a lubricant. This is in marked
contrast to the case of low-molecular-weight fluids in
which the macroscopic viscosity increases due to

omai
When a semidilute solution passes through a capillary,

i operator (a: t)/Bq») represents the convection and can be
important at long wavelengths, '

q & q, = (rbS) '

—(Np ) 'j 2)'j. Since there is also another charac-
teristic wave number q, =(aA, /Kp) 'j S—2), a new re-
gime arises in the case q, «q, or 2)» (Np )
There, I(q) is anisotropic even for q & q, as
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the phase separation will be first triggered near the
boundary wall with increase of the Aow rate or lowering
of the temperature. This results in a layer nearly free
from polymers near the wall leading to anomalous rheo-
logical effects. Our scheme also shows that the polymer
density tends to increase at the center of the capillary
and decrease near the wall even before the onset of the
layer formation. Such eA'ects are of great technological
importance and have been speculated or observed
without clear theoretical explanations. Notice that
Nozieres and Quemada proposed a mechanism of plug
formation in Aowing suspensions on the basis of the as-
sumption that the chemical-potential difference contains
a contribution proportional to the square of the shear
rate as in our scheme.
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