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Large Fluctuations in Polymer Solutions under Shear
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We present a phenomenological theory for the dynamics of concentration fluctuations of polymer solu-

tions in the presence of simple shear flow. A coupling between concentration fluctuations and stress ex-
ists in the system as a result of the concentration dependence of viscosity and normal stress coe%cients.
Linear analysis indicates that scattering is greatly enhanced by the flow, even at temperatures
significantly above the equilibrium coexistence curve. This may explain experimental observations of
turbidity above the equilibrium transition, but this would not be a true shift in the phase transition.

PACS numbers: 61.41.+e, 05.40.+j, 64.90.+b

Polymer insolubility, i.e., phase separation of a binary
mixture of a polymer from a low molecular weight sol-
vent, is characterized by a coexistence curve that is high-

ly asymmetric (in volume fraction of polymer, p). Below
the transition two phases coexist. One is a dilute phase
in which the polymer molecules are isolated and col-
lapsed. The other is a semidilute phase in which the pol-
ymers are Gaussian (radius of gyration Rs —N ' ) and
are strongly overlapped, but the volume fraction of poly-
mer is still quite small. The properties of a polymer
solution near the critical point' are those of a system in
the Ising universality class, with related N dependence.

In recent years a number of reports have appeared
that hydrodynamic flow fields are capable of producing
dramatic changes in the phase separation behavior of
polymer solutions. Greatly enhanced turbidity is ob-
served in the presence Aow, often at temperatures as high
as 50'C above the equilibrium critical temperature. The
interpretation of such findings has conventionally been
that the Aow field has shifted the phase transition to
higher temperatures. A quasithermodynamic theory has
been developed to describe the eA'ects of flow on the
demixing properties of polymer solutions, but it has no
basis in statistical mechanics and neglects much of the
physics that we believe to be essential to the observed
phenomena. As will be discussed, there are reasons to
expect greatly enhanced concentration Auctuations in

polymer solutions under flow, so that the experimentally
observed turbidity may not reAect an actual symmetry-
breaking transition.

The above experimental observations for polymer solu-
tions are quite remarkable when contrasted with the crit-
ical properties of (low molecular weight) binary fluid
mixtures under shear. ' In the latter systems, flow is
found to suppress concentration Auctuations and restore
mean-field character to the symmetric transition. Furth-
ermore, the critical point is shifted to lower, not higher,
temperatures, and the shift is at most a few degrees.

A phase separation (effected by a quench into the un-
stable region, from an initial homogeneous state with
only small, thermal concentration fluctuations) can be
thought of as a condition whereby molecules in a mixture

flow up a concentration gradient. This is a result of the
lower chemical potential at higher concentrations when
below the spinodal. Let us discuss another mechanism
whereby molecules can Aow up a concentration gradient.
Picture a system with a plane wave of concentration de-
viating from the average. Associated with the concentra-
tion inhomogeneity there will be an inhomogeneity of
transport coefficients, specifically the shear viscosity and
normal stress coefficients. Consider a polymer molecule,
in the inhomogeneous background, that is in a state of
extension greater than some average (manifest as greater
than average contribution to the stress). In relaxing
back to an equilibrium degree of extension, the parts of
the molecule in the low viscosity region will move more
than those parts mired in the high viscosity. Thus, the
relaxation moves the molecule's center toward the higher
concentration region. Of course, at equilibrium the final
concentration state achieved cannot depend on the trans-
port coefficients. The Auctuation-dissipation theorem
guarantees that the flux of molecules moving up the con-
centration gradient by the above mechanism is exactly
compensated by an extra Aux down the concentration
gradient during the birth of the molecule's fluctuation to
high extension. However, in a Pow j7eld the molecules
can be convected to a nonequilibrium steady state of
extension —excess extension in some directions, and
lower extension in others. Thus concentration waves in
certain directions will have a tendency to grow (that may
be greater or less than their tendency to dissipate by
difl'usion). In other directions dissipation of the waves is
enhanced.

To go beyond these intuitive considerations we present
a phenomenological treatment of polymer solutions un-
der flow. Although the model is somewhat oversim-
plified, we believe it to contain the essential ingredients
of a proper theory. Our description is a type of Auctuat-
ing hydrodynamics for one scalar, one vector, and one
tensorial field: c (r, t ), the monomer concentration;
u(r, t), the velocity of the solution; and cr(r, t), the "devi-
atoric" stress contributed by the polymer (stress in ex-
cess of the isotropic stress under no-flow conditions).
The hydrodynamic equations that we employ are the fol-
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lowing:

Bc BH= —u Vc+ V. cV
Bt k T Bc

VV:~+e, , (1)
kgT

p =Ti —pu Vu+q, V u+V. o+(Vc) +8„ll BH
Bc

~ = 2tl(y)e —e
&
(y)e'+ 4~2(y)e', (3)

where T& is a transverse projection operator reflecting
incompressibility (V u =0), and the upper convected
derivative is defined as

ev e+u (Ve) —(Vu) .e —e (Vu), (4)

a~(k) = k. a~(k) 2 (-k) (k)+9, ,
et ak,

n (k) =k'[e h(p)+ a'k '], —

with e =
2 [Vu+ (Vu) ] the symmetric rate-of-strain

tensor. We will use, according to convenience, the con-
centration c (monomers per unit volume) or volume frac-
tion p (p =cv, where v is the volume per monomer).
The uniform polymer concentration is co.

Equations (1) and (2) are similar to model H of criti-
cal dynamics, and were derived by projecting a micro-
scopic Rouse' description of polymer dynamics onto the
variables [c,u, o]. The first two terms on the right-hand
side (RHS) of Eq. (1) arise from the usual convective
and dissipative fluxes. H does not include the elastic part
of the Hamiltonian, which is manifested in the third
term on the RHS. This term, not present in model H,
represents a diA'usive Aux arising from inhomogeneous
elastic (polymeric) stresses in the ffuid. For the linear
analysis that follows, the chemical potential is given by
BH/Bc = [e—a V ]Bc, where from the random-phase ap-
proximation for polymer solutions, ' e = (Npo)
+(1 —po)

' —2g and a =Rg/3Npo. ' The equilibrium
spinodal occurs at the temperature where t..=0. For the
Rouse model, the Onsager coefficients in the second and
third terms of Eq. (1) are equal and are given by
k=keT/g, where g is the monomer friction coefficient.
We retain this equality for the present analysis, but note
that a nonlinear theory would probably renormalize the
two coefficients differently. The final term in Eq. (1) is a
Gaussian white noise with covariance that satisfies the
fluctuation-dissipation theorem. This covariance de-

pends on the variable c, but to lowest order in inhomo-
geneity or when application calls for averaging over Auc-

tuations, c may be replaced by co.
Equation (2) is identical to the corresponding equation

of model H (p is mass density and q, is solvent viscosi-

ty), except for the third term on the RHS that represents
the polymeric contribution to the solution stress. To
terms linear in the fluctuations the Gaussian white noise
e„has a variance proportional to rt, + ri(po), where ri(p)
is the polymer contribution to shear viscosity.

Equation (3) is a consecutive equation relating poly-
meric stress to the rate of strain and is known as the
"second-order fluid. " In addition to the Newtonian
viscosity, it contains first and second normal stress
coefficients, e~(p) and +2(p). Strictly speaking, ~2(p)
=0 for the Rouse model, but we retain the possibility of
a finite +2 since concentrated polymer solutions exhibit
second normal stresses.

We will examine Eqs. (1)-(3) to terms linear in the
amplitude of the inhomogeneity. In the absence of flow

this is suitable for a study of the decay of small Auctua-
tions, or to describe the early stages of spinodal decom-
position. In the late stages nonlinear terms must be in-
cluded to stabilize the system against the infinite growth
of Auctuations. In the present case we will see that con-
vection provides a stabilization mechanism. Neverthe-
less, the composition fluctuations are found to be ex-
traordinarily large in particular regimes; and for such re-
gimes it should be understood that the present linear
analysis is inadequate. We write the viscosity and nor-
mal stress coefficients as

rt(y) =rt(y&)+ rt'By(r),

e;(y) =e;(yo)+e By(r) .

In the absence of the inhomogeneity the velocity field is a
simple shear ffow, u(r) =aye„, where e is a unit. Equa-
tions (2) and (3) may be used to calculate the flow pat-
tern and deviatoric stress to lowest order in Bp. Here we
ignore 8/Bt, u V, and noise terms, assuming that the ve-

locity and stress fields rapidly relax to the forms dictated
by the local concentration pattern. Substituting into Eq.
(1) yields an equation of motion for the Fourier com-
ponents of the concentration fluctuations, p(k), where we
only consider k in the x-y plane:

l„'K V& + 2(l„' —l~') x-'e~
h(P) =2l lyx'rt +l x O'I+x' e2 [(l ly)a'il l lyK +)]

rc(j+j,)+l„lyx. +)
Here p is the angle that k makes with the x axis, l =cosp, and l~ =sinp. In these equations we have gone to dimen-
sionless variables, denoted by an overbar and defined in Table I. Henceforth we shall omit the overbar except to distin-
guish between e and e. In all our calculations we assign a value to the variables based on a degree of polymerization
N =2500 and an average concentration &0 =0.02, which is the mean-field critical concentration.
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Reduced
variables

TABLE I. Reduced parameter and values.

Value
(Rouse) 'Definition

g
'P l

gs

t/r
JC7

kz,
eNPp
~c I-'m ~

a Ngp/Rs
X r/NRs
rIN& pvm/ka Tr
+ iNOp~'m/ka Tr
+2N&pvm/ks Tr'
tI, Nppv~/kg Tr

I/3
I/6
Np$
0.8Nyf
0
1.29yp/N

T = NgRg /6k' T, /=monomer friction constant
i~ =monomer volume = 100 cm /mol, Rg N'6 /6 and
statistical length = 0.67 nm.

, 1/3

b =monomer

2~ n (k) —~k„S(k)=2~k '.
t)ky

(io)

We have chosen a normalization (reduced units) for S
such that in the absence of flow S= (e+ a k ) '. The
solution may be reduced to quadratures by the method of
characteristics

t 0
S(k) =2k„dt'exp —2), dt" t)(k(t")) k (t'),

(i 1)

Equation (7) may be converted to an equation for the
steady-state fluctuation intensity (the structure factor),

S(k) =(y(k) q( —k) &,

which is proportional to the scattering intensity. The
equation for 5 is

Eq. (11) is that the fluctuations at k at time 0 are com-
posed of the fluctuations created at k(t') at all earlier
times t'. These are created at a rate 2) k (t') by the
noise. They are also partially dissipated at each moment
t" between t' and 0. The rate of dissipation is propor-
tional to f) evaluated at the current wave vector, k(t").

The function h(P), through which the efl'ects of the
coupling of the elastic stress, velocity fluctuations, and
concentration are manifest, is plotted in Fig. 1 for K =1.
In this strong-flow case h has a maximum at h „=76.5
corresponding to P=P,„=41'. To set the scale in

physical terms, a=76.5 might correspond to a tempera-
ture more than 100 C above the 0 temperature for a
typical polymer-solvent system. When the dissipation
rate is large compared with the shear rate, i.e.,
k A (k)» tc, then S is given by

s(k) = 1

e —h(P)+a k

For the most part the term a k is negligible, and the
scattering depends only on the angle of observation P. S
is considerably more for P positive than the no-flow value
of I/e, and less for P negative.

When e (h,. „, Eq. (13) cannot be valid in the region
of P where e —h(P) is negative. In this region the fluc-
tuations will be growing and the scattering at these an-
gles will be enormous, as illustrated in Fig. 2. The con-
vection plays an important stabilizing role in sweeping k
out of this region and into a region of smaller P where
the fluctuation again dissipates. Even at P's somewhat
below the unstable region the fluctuations can be expect-
ed to be very large since they have not had sufhcient time
since passing through that region to decay back to values
approaching Eq. (13). Although this mechanism for
avoiding complete instability exists, the results are cer-

k(t) =k e„+(k~ —x.k t)e~. (i2)
10000

To appreciate this formula note that in a pure shear field
waves are convected in such a way that their wave vector
changes length and rotates clockwise (P decreases). A
wave that has wave vector k at time 0 has or had wave
vector k(t), given by Eq. (12), at time t The content . of
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FIG. I. Function h(P) vs P for x =I, indicating tendency
toward growth of fluctuations for positive p.

FIG. 2. Structure function S ( a: scattering) at p =41'
(p,.„) and

~
k

~

=1. The solid line, 5 for flow rate s = I, is to
be contrasted with the dashed line, which is the absence of
flow. The figure shows growth of fluctuations with decreasing
e (temperature) far above the spinoidal temperature (F=O).
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tainly quantitatively deficient because of the neglect of
nonlinear terms. Without these terms the theory is real-
ly only adequate for e above h, „, or perhaps to describe
the early development of fluctuations in a spinoidal-
decomposition-like T-jump experiment. The large fluc-
tuations in the region e h, „might be sufhcient to in-
duce a first-order transition, even at the critical composi-
tion. Work on a nonlinear theory is in progress.

For smaller flow rates, with tc and e=0(po), both the
convection and the nonlocal term, a k, play a role. The
full Eq. (11) is needed. Typical results will be discussed
elsewhere.

Finally a word should be said about the special case of
waves with k totally in the y direction. Such waves are
not convected [cf. Eq. (12)]. Thus, in principal, it
should be possible to form a stable phase with the inter-
face parallel to the x axis. From Fig. 1 we expect that
the stability of such waves (P = +' tr/2) should not
change at the no-flow transition temperature (e=O).
This is true only if the second normal stress coeKcient is
zero (or if it has no concentration dependence). With a
negative +z, as is usually the case, the prediction, using
the Rouse model for other variables, is that the "transi-
tion" would move to higher e (higher T). As a note of
caution, using Zimm parameters' the transition moves

to lower e. However, even more caution is required be-
cause of the enormous fluctuations that were shown
above to exist in the system. Such fluctuations are cap-
able of shifting the transition significantly through renor-
malization.
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