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The occurrence of parity doubling in baryon spectra is pointed out and its relevance to hadronic struc-
ture is discussed. It is suggested that parity doubling is a consequence of the geometric structure of

baryons.
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The purpose of this Letter is to bring attention to a
major feature of baryon spectra that, although extensive-
ly investigated in the late 1960s within the context of
both chiral symmetry' and Regge-pole theory,? has, in
recent years, been somewhat overlooked. This is the oc-
currence in the spectra of parity doublets (i.e., two states
with the same angular momentum and opposite parity
occurring at the same energy). In Fig. 1 the squared
masses M * of the N (I = %) baryons are plotted against
the angular momentum J. The occurrence of parity dou-
bling at intermediate values of J, J= %, is evident.

R(8,0) =R, [1 +Xa1,Y1,(0,0)+ X a2, Y2,(0,0) + X a3,Y3,(6,6)+ - - - ]
u u u

Plots of the squared masses of the other baryons show
that parity doubling is also evident in the A (=%
spectrum, but less evident in the £ (/=1) and A (I =0)
spectra. Parity doubling does not occur for the ground
state and gradually disappears at large angular momenta
U= 4).

In this Letter I want to suggest an interpretation of
parity doubling in terms of the geometric structure of
baryons and show that it is an unescapable consequence
of baglike or stringlike models.

(a) Baglike models.— Consider an object with a sur-
face R=R(0,¢), expand this surface in multipoles

(1)

and assume, for simplicity, axial symmetry around the z axis, 4 =0. For the sake of the discussion below it is also con-
venient to remove the displacement of the center of mass induced by the deformation and write R as

R(8) =Ro{l + &P,(cos0) + + &3P, (cos0) + P3(cos(6 —27/3)) + P3(cos(0 —4x/3))]1+ - - - },

where the ¢’s denote the deformation parameters,
er=a;0l(21+1)/47x1'2. Depending on the values of
€,€3, ..., the object described by Eq. (2) is either a
spherical top, a prolate, or an oblate symmetric top. The
spectrum rotational states® of a prolate symmetric top is
shown in Fig. 2(a). For a spherical or an oblate sym-
metric top similar spectra are obtained. One observes in
Fig. 2 the occurrence of parity doublets, 1 2%, ...,
for all values of the orbital angular momentum, L, ex-
cept the ground state, L =0. The doubling arises from
the degeneracy of states with quantum numbers + K and
—K. The wave functions of the symmetric top are the
Wigner functions, Dfx(6:,0,,03). Since these trans-

form under parity as
PlDNk(61,0,,0)1=(— 15Dl _£(6,,6,,65), (3)

the parity doublets are

(+) — ﬂﬁk(9|,92,03) +(— 1)L+K.@AL,4V7K(9|,92,93)
V2

Parity doubling does not occur for kK =0. The shape
given by Eq. (2) appears to be a natural shape for
baryons at intermediate angular momenta. Using argu-
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ments similar to those presented by Johnson and Thorn*
for mesons, one expects the three quarks forming the
baryon to sit, for low angular momenta, at the three
lobes of an octupole shape, €,=0, €30, as shown
schematically in Fig. 3(c). This configuration is
different from that of mesons, quadrupole shape (e;>=0,
€3=0), Fig. 3(a). For the latter shape, parity doubling
of the type discussed above does not occur. The rotation-
al spectrum of an object as in Fig. 3(a) is shown? in Fig.
2(b). It consists of a Regge trajectory with angular mo-
menta and parities LY=0%,1",2%,37, . ...

The occurrence in some states and nonoccurrence in
others of parity doubling appears thus to be a conse-
quence of the geometric structure of hadrons. However,
one must in the case of hadrons proceed further since, in
addition to a geometric structure, hadrons have an inter-
nal structure. The presence of the internal symmetry
imposes some conditions on the allowed states. For ex-
ample, the total wave function of baryons must be an-
tisymmetric under interchange of all constituent vari-
ables. If one assumes that the internal degrees of free-
dom are described by SU.(3) ®SU(6), where SU.(3)
denotes the color algebra and SU(6) the spin-flavor
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o!l//22: 3720 FIG. 2. (a) Schematic representation of a portion of the
2 q o2 B spectrum of rotational states of a prolate symmetric top. K
denotes the projection of the angular momentum on a body-
I 4 owe* o fixed axis. The transformation properties of the states under
S3 (A, A3, and E species) are also shown. The vertical scale
T T T T T T —T T represents energy. For nonrelativistic tops, M(L,K)=M,
V2 3/2 5/2 7/2 9/2 W2 13/2 15/2 J +CL(L+1)+DK? For baryons, M2(L,K) is given by Eq.
(4). (b) Schematic representation of a portion of the spectrum
FIG. 1. Experimental spectrum of the N (I=1%) baryons of rotational states of a linear object (symmetry Cw,). The

(Ref. 10). The square of the mass M2 is plotted against the
angular momentum J.

algebra, the statement above implies that the geometric
wave functions must be combined with the internal wave
functions in such a way that the total wave function is
antisymmetric. Since the color wave function must be
antisymmetric this implies that the product of the
SU(6) and the R (geometric) wave function must be
totally symmetric. The SU(6) representations that ap-
pear in baryons are of three types, as shown in Table I.
In order to see which states survive, we must consider the
property of the geometric wave function under permuta-
tion of the three lobes (quark permutations). Since the
permutation group S; is isomorphic to the point group
Cjs,, it is relatively easy to see what are the transforma-
tion properties of the rotational states.®> (3, has one
two-dimensional representation called E, and two one-
dimensional representations called 4, and A, (Table I).
The states in Fig. 2(a) are labeled by these representa-
tions. The argument given above then says that 4; must
be combined with 56 of SU(6), A, with 20 of SU(6),
and E with 70 of SU(6). Thus, the ground state of
baryons belonging to the representation 56 of SUs(6)
should nor be parity doubled. Only those states belong-
ing to the representation 70 are expected to be parity
doubled. Although the experimental evidence is not
complete since not all states are known and, in addition,
some of them may be overlapping because of the large
width, it appears that parity doubling rules, as provided
by the combination of representations of S3; and
SU,/(6), are satisfied.

transformation properties of the states under S, (4 and B
species) are also shown.

It is worthwhile mentioning here two additional points.
First, exact parity doubling relies on baryons behaving as
spherical or symmetric tops. This can only occur if the
masses of the three quarks are identical. If one of the
masses is different, as in the case of strange baryons, one
has instead an asymmetric top. In asymmetric tops, K-
type parity doubling is broken.> The amount of asym-
metry depends on how large the mass difference is be-
tween strange (s) and nonstrange (u,d) quarks. Indeed
it appears that parity doubling is somewhat broken in the
A and X baryons. The second observation is that, using
arguments similar to those of Ref. 4, one can show that
as the angular momentum increases there is a tendency
for one of the quarks to move farther and farther away
from the other two, thus producing an elongated shape
similar to that of mesons (a diquark transforms as 3 un-
der color), Fig. 3(b). Since, as discussed above, this
shape does not have parity doubling, one expects that
this feature gradually disappears as L increases. This
again appears to be consistent with observation. Indeed,
at large angular momenta baryons look very similar to
mesons and their rotational spectra (Regge trajectories)
become identical. %>

(b) Stringlike models.— Arguments similar to those
presented above for the bag model will apply to string-
like models (Nambu-Goto strings). Stringlike config-
urations of the type shown in Fig. 3(g) ¢ also have C3,
invariance and one can characterize their rotational
states with representations of this group.
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FIG. 3. Schematic representation of the geometric structure
of hadrons: (a)-(d) bag model; (e)~(h) string model. As the
angular momentum increases hadrons elongate [parts (b),(d)
and (f),(h)]. The longitudinal length (z axis) is expected to in-
crease (Ref. 4) as VL. Since in mesons nonidentical particles,
q and g, sit at the end points, the geometric group is Cew, (and
not Dews) and remains the same for all angular momenta. The
geometric group of baryons is instead C3. at low angular mo-
menta, L == 1, part (c) and gradually changes into C, at large
angular momenta, part (d).

All the arguments presented in the previous para-
graphs have been of a general nature. One may inquire
how a detailed analysis of baryonic spectra can be done
which fully exploits the inherent symmetry of the prob-
lem (parity doubling). I would like to suggest the use of
algebraic methods for treating the geometric structure of
hadrons, similar to those employed in other fields of
physics.

(a) Baglike models.— Shapes of the type of Eq. (1)
have been treated’ by considering the algebra of 7
=U(16), obtained by quantizing the classical variables
as, (Wu==%x3,+£2,+1,0), az, (u==x2,%+1,0), and ay,
(u==1,0) together with the monopole variable ago.
U(16) is a compact algebra with finite-dimensional rep-
resentations and is appropriate for nuclei. In hadrons, in
view of confinement, one could use the noncompact ex-
tension U(15,1) and consider its discrete, infinite-
dimensional series.

(b) Stringlike models.—Planar stringlike configura-
tions, such as those given in Figs. 3(b) and 3(h), have
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TABLE I. Top: SU(6) representations that appear in
baryons; bottom: S'3 representations that appear in baryons.

Young tableau [A1,22,13,44,A5] Dim.
Oooan (3,0,0,0,0) 56
oo (2,1,0,0,0) 70
o
8] (1,1,1,0,0) 20
o
O

S3 Cie Dim.
O oo A |
mw] E 2
o
] Al 1
a)

O

been treated® by considering the algebra % =U,(4)
®U,(4), where the indices 1 and 2 refer to variables
describing the relative location of particles in the string.
This is again a compact algebra appropriate for mole-
cules. In hadrons one could use the corresponding non-
compact algebra U,;(3,1)®U,(3,1). If the string is
aplanar, more complex algebraic constructs are needed.
It should be pointed out that in any case, Z=U(16) or
U,(4)®U,(4) for more complex constructions, one must
insist, in order to obtain rotational spectra as in Fig.
2(a), that the subalgebras O(4) D0(3) D0(2) be con-
tained in R, as discussed in detail in Ref. 8 for the rota-
tional spectra of molecules. If one uses the noncompact
algebras U(15,1) or U;(3,1)®U,(3,1), the correspond-
ing noncompact extension O(3,1)2>0(3)D>0(2) should
be contained in 7.

In the paragraphs above I have discussed only rota-
tional excitations. A similar discussion can be presented
for vibrational excitations either of the bag or of the
string. To see which vibrations survive when combined
with the internal symmetry, one must perform an
analysis of the vibrational states similar to that given
above for rotational states. Both vibrational and rota-
tional states can be included in the algebraic approaches
U(15,1) or U;(3,1)®U,(3,1) suggested here. In addi-
tion, these approaches allow one to construct mass for-
mulas describing the rotational and vibrational excita-
tions. These mass formulas can be obtained by the usual
method of expanding operators in terms of Casimir in-
variants. Mass formulas which embody the features of
hadronic spectra can be conjectured from the well-known
formulas for nonrelativistic tops> and taking into account
the elongation of the bag (or string) with angular
momentum.® In the case of identical particles at the
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lobes of the bag (or at the ends of the string) one obtains

M*(L,K)=M§+laL(L+1)+BL(L+1)K*]'2

~ M$+L(a+BK)'% 4)
L>1
K=LL—1,...,—L+1,—L.

For nonidentical particles, C3, invariance is broken, and
the mass formula is modified accordingly. Similar mass
formulas can be constructed for vibrational excitations.
A full account will be given in a longer paper. Finally,
when comparing with the experimental spectra, the com-
bination of internal and geometric degrees of freedom
must be carried out explicitly. For example, the orbital
angular momenta and parities shown in Fig. 2 must be
combined with the intrinsic spin, S, and parity, P, of the
states. This implies that for mesons the parities given in
Fig. 2(b) must be reversed (since g has negative intrin-
sic parity) and that each state becomes a multiplet when
S#0. In conclusion, I have emphasized the occurrence
of parity doubling in baryon spectra and associated it
with the geometric structure of hadrons (C;,. invari-
ance). This geometric interpretation is not in conflict
with the Nambu-Goldstone realization of chiral symme-
try! and appears to be consistent with the present data.
Because of its discrete nature C3, invariance is similar to
the Z invariance of Dashen,® although it has a different
physical origin. The geometric interpretation arises nat-
urally in collective models of hadrons (such as the bag
and string models) and is linked to the fact that the color
group is SU(3). It does not arise naturally in single-
particle models of hadrons (such as the nonrelativistic
quark model with harmonic-oscillator potentials) where
parity doubling is accidental, since states of opposite par-
ity have different numbers of oscillator quanta. Indeed,

these two classes of models differ somewhat in their spec-

. troscopic properties, especially those related to the

N(1440), N(1540), A(1550), and A(1600) states.
These differences could be resolved by new measure-
ments such as those planned at the Continuous Electron
Beam Accelerator Facility (CEBAF) presently under
construction.
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