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We analyze SU(2) and SU(3) lattice gauge theory on L, X L%co lattices (L, < L). By B. we denote
the critical coupling at L =oco. In the neighborhood of the deconfining phase transition, at appropriately
defined coupling constants B(L,L'), L > L' [with B(L,L')— B, for L'— oo], the correlation length &
scales ~L/L' for second- and first-order transitions (¢ =1/E, with E the energy of one unit of "t Hooft
electric flux). Linearization around the couplings B(L,L') allows the calculation of critical exponents.
Numerical results (L, =4) support a second-order transition for SU(2), but not for SU(3).

PACS numbers: 11.15.Ha, 05.50.+q

Extensive numerical investigations of the SU(3) de-
confining phase transition exist in the literature and the
first-order of the transition seems to be well estab-
lished.!> However, recently this wisdom was challenged
by the APE Collaboration.? They observed &~L near
the critical point and took this as evidence for a second-
order transition. To resolve this apparent contradiction
is the purpose of this Letter. Our considerations are car-
ried out for the deconfining phase transition. Obviously,
they are more general and apply as well for magnetic
systems (say 3D Ising model versus 3D three-state Potts
model). The bottom line is to clarify the finite-size be-
havior of the correlation length for a first- versus a
second-order phase transition.

Following Refs. 4 and 5 we consider L,;L%o0 (L, <L)
lattices with sites labeled by ¢, x, y, and z. Let us close
Polyakov loops in the ¢ direction and sum over the (x,y)
position (zero momentum). The asymptotic falloff of
their (disconnected) correlations,

(P(O)P(z))~exp(—E z) (z— o), (¢))

defines the energy E; of one unit of ’t Hooft electric flux
and £=1/E, is the relevant correlation length for the
deconfining phase transition. (E; is the analog of the
mass gap in magnetic spin systems.) In the following we
keep L, finite and fixed. Let us first comment on the in-
finite-volume system (i.e., L =o). We denote by f.
=p.(L,) its critical coupling. The electric flux behaves
pronouncedly different for first- and second-order phase
transitions and is qualitatively depicted in Fig. 1. We
shall see that for L= the situation is considerably al-
tered by finite-size effects.

For B#p,, the large-L behavior of the 't Hooft electric
flux is given by

E(L,B)=E (0, [1+0( -], (2a)
c-(B)>0, for <.
and

E\(L,B)=0( *PL) ¢,.(g)>0, for B>p.. (2b)

The functions ¢ +(B) are monotonically increasing in
| B—B.| for B in a sufficiently close neighborhood of ..
Equations (2) are valid for first-order as well as for
second-order transitions and they reflect that, away from
the critical point, finite-size corrections are exponentially
small in L. The finite electric flux for 8> B, is due to
tunneling. In the case of a second-order transition we
have the additional equation

#] 3)

[or equivalently &(L,8.)~L].

const

E\(L,B.)= +0

Equation (3) follows in the limit B— B, [&(eo,B)
~ | B—pB.| ~"1 from the finite-size scaling equation®

&(L,pB) L
§(,B) §(,p)

and the fact that for L finite, £(L,B) is a regular func-
tion of 8 even at S3..
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FIG. 1. E(o0,B) for first-order (curve a) and second-order

(curve b) phase transitions. With our definition (1), E(c0,3)
=0 for 8> B..
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In numerical applications Eq. (3) does not allow us to
distinguish a first- from a second-order transition. In the
case of a first-order transition, one can find By values in
an arbitrarily small neighborhood of B, such as that at
B=pBo a behavior like (3) is true (for sufficiently large
values of L). Consider two lattices of size L and L', with
L > L' (and, as always, L, fixed). Equations (2) imply
the existence of a coupling S(L,L') such that LE(L,B)
>L'E{(L',B) for < B(L,L') and LE(L,B) <L'E{(L’,
B) for p> B(L,L"). Consequently,

E(L,Bo) L

2L Bo) =7 for Bo=p(L,L")

and L}im BL,LY=B.. (5)

For instance, one may choose L =2L' and find at
B(L,L') an increase of the correlation length by a factor
of 2 when one compares results from lattices with sizes L
and L'.

In a neighborhood of By we define the transformation

B— B' by requesting LE (L,)=L'E(L',8"), (6)

which has By as a fixed point. [If this transformation is
unclear, find out from Fig. 2(a) how it works.] In the
case of a second-order transition an equation for the crit-
ical exponent v is obtained by linearization around Bo.”

Let AB=p—Bo, AB'=p'— Bo; we have

dE\(L,B)

E[(L,ﬁ) =EI(L1ﬂ0)+Aﬂ dﬁ

’
B=ho
and

E\(L'\B)=E(L',Bo) +Ap'

dE\(L',B") }
dﬂ' B ﬂo.
Using Egs. (5) and (6) this gives

!LI

ABL

dE\(L,B) dE\(L'.B") ]
ap dp’' i} ﬁo‘

So far our considerations are true in general. Finally, let
us assume that the transition is of second order. Then
Eq. (6) and the finite-size scaling equation (4) combine
to give

B=Bo

_.____é(iL
L' &(eo,p)

Ap
AB
Putting everything together we arrive at
[ _dLE\ @ p)dBly=p, |7
[dL'E\(L',B)/dB'] 5 =p, ’

A8
A

—In = ln

<7 | and B <B<B..

L

v(L,L") =In

@)
for a second-order phase transition. As far as we can
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FIG. 2. (a) SU(2), LE\(L,B) vs B. The lines are the least-
squares fits of our L =6 and L =10 data. (b) SU(3), otherwise
as in (a).

judge, Eq. (7) is meaningless in the case of a first-order
transition. Using it (formally) nevertheless we would
not expect the v(L,L") to converge towards a meaningful
value (although we are not aware of a proof of such a
statement).

Our numerical results are now easily presented. Along
the lines of Ref. 4 we have performed high-statistics
simulations (100000-120000 sweeps per data point) on
4xL %00 lattices (c0=64-66) with L =4, 6, 8, and 10.
In the neighborhood of 8. we adjusted B values such that
linear regression of LE,(L,B) is self-consistent. More
precisely, for the data used the subroutine FIT® gives us
Q values which are rather uniformly distributed in the
range 0.16 < Q <0.98. Figure 2(a) depicts the SU(2)
fits for L =10 and L' =6, and Fig. 2(b) depicts the corre-
sponding SU(3) fits. The derivatives in (7) and their
statistical errors are then obtained from the slopes as
evaluated by the subroutine FIT and the By values are
determined by the crosspoints of the straight lines. Tak-
ing error propagation properly into account we arrive at
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the Bo results
B(8,4) =2.2937 +0.0008 ,

(8a)
£(10,6) =2.3106 = 0.0010
for SU(2), and
B(8,4) =5.6854 +0.0008 ,
(8b)

B(10,6) =5.6930+0.0010

for SU(3). These numbers may be compared with vari-
ous “infinite-volume” estimates for the critical coupling
constant fB., namely, around pB,=2.2981+0.004 for
SU(2) (Ref. 4) and B. =5.696 % 0.004 for SU(3).°

Our numerical results for the critical exponents
v(L,L') are

v(8,4) =0.603 = 0.022,

(9a)
v(10,6) =0.661 = 0.044
for SU(2), and
v(8,4) =0.334£0.018,
(9b)

v(10,6) =0.487 £ 0.028

for SU(3).
In the case of SU(2) both results are consistent with
one another and may hence be averaged to

v=0.615+0.020. (10)

This agrees with 3D Ising-model estimates, which center
around v=0.629,'° and is a direct numerical confir-
mation of the often exploited analogy'' between the
SU(2) deconfining phase transition and the phase transi-
tion of the 3D Ising model. Previously,'? the exponents
a, B, and y were found to be consistent with Ref. 11 and
v=0.61%0.03 was reported > from a numerical investi-
gation of the partition-function zeros on L,L* lattices
with L, =2,

In marked contrast to Eq. (9a), the SU(3) estimates
of Eq. (9b) are completely inconsistent with one another.
Assuming a Gaussian distribution, the likelihood that the
difference between v(8,4) and v(10,6) is due to chance
in 0.24 (=24%) for the SU(2) Eq. (9a), but less than
5% 10 7% for the SU(3) results (9b). Relying on these
data our statement is the following. We have no evi-
dence for a second-order SU(3) transition. Consequent-
ly, we see no reason to doubt previous investigations,"2
which directly support the first-order nature of this tran-
sition. [We consider it an accident that v(8,4) is in

agreement with the value 1/d that the so-called “discon-
tinuity fixed point”'* of a 3D spin system is supposed to
have. Such a fixed point is relevant for the L,L3
geometry, where for L, =2; indeed 1/v=3.02 £+ 0.05 was
found by investigating the partition-function zeros nu-
merically. %]

In summary, our finite-size scaling analysis of the
’t Hooft electric flux yields an explicit critical exponent v
(10) for SU(2) lattice gauge theory and evidence that
the SU(3) deconfining transition is of first order. In fu-
ture work '® an analysis of 3D spin systems is planned.

The Monte Carlo data were produced on Florida State
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analysis. Also, we are indebted to K. Bitar and H. Satz
for comments on the manuscript. This research project
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Contracts No. DE-FG05-87ER40319 and No. DE-
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