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Separation of the Energy of Overall Rotation in Any 1V-Body System
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A general exact procedure for separation of the energy of the overall rotation from the "internal" (vi-
brational) energy in any (arbitrarily floppy) N-body system is formulated. It is based on following the
detailed dynamics of the system and it retains all the dynamical couplings allowing for the Aow of energy
between the rotation and vibrations. Still, it leads to a complete instantaneous separation of the energies
in that the Coriolis term in the Hamiltonian is zero at all times. The utility of the new scheme is illus-
trated.

PACS numbers: 03.20.+i, 36.40.+d, 82.30.Qt

The general problem of separation and characteriza-
tion of the overall rotation in any (not necessarily rigid
or near rigid) N-body system is among the few still un-
solved problems of traditional classical mechanics.
While an elegant description of the at times, indeed,
complex force-free motion of a rigid body about a fixed
point has been given more than a century ago, ' the
description of rotational motion of highly nonrigid sys-
tems remains a challenge. The remedy for the case of
Aoppy systems is usually formulated in terms of near-
rigid (or "semirigid") bodies in which the rotational
motion is executed in conjuction with (small-amplitude)
oscillations. The validity of the near-rigid model is based
on a Born-Oppenheimer-type time-scale argument and
separability, in the case of molecules, of the rotational,
vibrational, and electronic degrees of freedom. The field
of theoretical rovibrational spectroscopy is essentially the
quantum-mechanical (or semiclassical) version of this
model: The rotational energy spectrum is calculated as
that of a spherical, symmetric or asymmetric top (rigid
or semirigid). The extension to semirigid molecules usu-

ally heavily exploits their symmetry properties. None of
the approaches is, however, general enough to deal with
the case of an arbitrarily Aoppy, nonsymmetric, rotating
(nonzero total angular momentum) molecule. The need
in a more comprehensive approach to characterization of
the rotational motion arises not only in spectroscopy.
Classical dynamical studies of phase properties (e.g. ,
solidlike versus liquidlike) and isomerization transitions
in N-body systems, such as atomic clusters, revealed the
extremely important and quite intricate role of the total
angular momentum on the detailed time evolution of
these systems. ' To fully understand the mechanism
through which the overall rotation impacts on the phase
change and isomerization dynamics one must be able to
isolate this rotation in any ¹ tom system; and this is
while by virtue of the phenomenon at hand no a priori
restriction on the degree of nonrigidity of the system
may or should be imposed

In this Letter we formulate a general prescription for
separation of the energy of the overall rotation from that

and its energy,

b & &rb(r). Lrb (2)

are constants of motion. I" (t) in Eq. (1) is the instan-
taneous tensor of inertia of the rigid body in the
laboratory-oriented system of coordinates. If the rigid
body consists of N-point particles of masses m;
(i =1, . . . , N) then I" (t) can be expressed through the
coordinates r;(x;,y;,z;) of these particles as a 3&3 ma-
trix with matrix elements

I..(r) =pm;[r (r) —a (r)],

I.p(r) = —gm;a;(t)p;(r); a,p(wa) =x,y, z.
(3)

Consider now a nonrigid N-particle system. Integrat-

of the "internal" (vibrational) motion in any isolated N
body system without imposing any restriction on the de-
gree of its floppiness or making any assumption regard-
ing its symmetry. Because of our original interest lying
in dynamics we consider the N-body system as a classical
dynamical object evolving in time in accordance with
Hamilton equations of motion under forces defined by a
known potential V(/r;j), i =1, . . . , N. To eliminate the
translational motion we refer the coordinates [r;J and the
momenta fp;J of the constituent particles to the center-
of-mass laboratory-oriented system of coordinates. Our
procedure capitalizes on the known classical dynamical
relations for a rotating true rigid body. Recall that a
force-free rotation of a true rigid body about a fixed
point (e.g. , its center of mass) is fully characterized by
the time evolution of its angular velocity m" (t). This
evolution is most conveniently described by Euler equa-
tions formulated in the body-fixed principal-axes system
of coordinates; an analytical solution exists in terms of
elliptic functions. Although m" (t) changes with time,
the rigid-body total angular momentum in the lab-
oratory-oriented frame,

Lrb =Irb(r). rarb(r)
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ing numerically its Hamilton equations in coordinates
r;(t)[x;(t),y;(t),z;(t)], we can calculate its instantane-
ous tensor of inertia I(t) by substituting these coordi-
nates into Eqs. (3). Even though one may find that
I(to) =I' (to) for a certain true rigid body at a certain
t =to, the equality will not, in general, remain valid at
r ) to Fo. r so defined I(r) and total angular momentum
L of the system,

L=gr, xp, ,

which is a constant of motion, we can introduce a vector
roL' (t) satisfying the equation

L=I(r) roL'" (r).

The meaning of coL' (t), which is defined by Eq. (5)
uniquely, is easily understood: It is the angular velocity
with which the nonrigid system of total angular rnomen-
tum L and tensor of inertia I(t) would rotate if at in-
stant t it were a true rigid body. Or in other words, at
any time t we can associate with the nonrigid system a
rigid body rotating with angular velocity mL" (r) and
having the same L and I(t) as the nonrigid system; the
motion of this rigid body represents the instantaneous
overall rotation of the nonrigid system. Thus by assign-
ing roL'" (t) to a nonrigid system we separate out its
overall or "rigid-body" part rotation. The energy of this
rotation is

Since g;r;xp;" =L,

gr;xap; =0.

The total kinetic energy of the nonrigid system is

+ pP + (pi" ) +g (~pi) +g pi" '~pi
2m ' i 2mi i 2m; m;

Since p;' =m;(mj" xr;) the last sum, which will be
recognized as the Coriolis term,

acerb»
' =g(gpi'""xr, ) gp,

That such a partitioning can be made always is
guaranteed by the following.

Theorem: Qf all the compositionally identical N-
particle systems with the same configuration and total
angular momentum L in the center-of-mass laboratory-
oriented system of coordinates, the (instantaneous) rigid
body has the lowest total kinetic energy.

Proof: Let the set [r;j define the configuration of the
systems and [p;' ] and [p;] be the momenta of the par-
ticles comprising the rigid body and the arbitrary other
(nonrigid) system, respectively. Defining hp; =p;—p; ",we can write

L=gr;xp;=Jr;xp; ' "+g"r;xap;.

Ej.'"'
(r) = —,

' coL"' (r). L. (6)

4i

roL Zri x ~pi

Since the time evolution of I(t) is ultimately defined by
Hamilton equations (and not by those for a true rigid
body) the time evolution of mL"" (t), defined by Eq. (5),
is also diAerent from that for a true rigid body. This
means that a diA'erent rigid body corresponds to our non-

rigid system at difI'erent times. A consequence of this is
that Ej' (i)econst in distinct dissimilarity with the
case of a true rigid body. Alternatively, one can picture
the time evolution of the overall rotation of a nonrigid

system as represented by a rotational motion of a chang-
ing rigid body. Although the notion of a changing rigid
body may appear as inherently contradictory it correctly
captures the essence of the effect. The continuous
change in the rigid body is essentially the continuous
change in the instantaneous ellipsoid of inertia corre-
sponding to the nonrigid system. The term rigid body is
retained to emphasize that at any instant t the motion of
this phantom changing body is fully described by a single
vector roL'" "(t).

Using Ej'" [Eq. (6)] we can write the total kinetic
energy of any nonrigid system as a sum of the energy of
its overall rotation and the "rest, " to be called internal
(vibrational) energy E '"'.

in view of Eq. (8). Thus

2 2

(riiL" x r;) (riiL'" x r;) +g
2m~' i 2 i 2mi

From here the statement of the theorem is obvious. A
few remarks are in order. First, it follows immediately
that E'"'=g;(ap;) 2/2m;, where Wp; =p; I;(uij""— .
xr;). We can then introduce an internal temperature T
defined as 2E'"'/(3' —6)k, where E'"' is the appropriate
(ensemble or time) average of E'"' and k is the
Boltzmann constant. Second, as seen from Eq. (9), the
scheme presented accomplishes a complete instantaneous
separation of the energy of overall rotation in any non-
rigid system from the internal (vibrational) energy in
that the Coriolis term is zero at all times. This is a
consequence of the fact that in this scheme the vibrations
do not contribute to the total angular momentum at all
[Eq. (8)]. Note that the complete instantaneous separa-
tion (apportionment) of the energies is achieved despite
the fact that the dynamical coupling in the system is
fully retained and the rotation and vibrations exchange
energy. Third, looking upon Ap; in Eq. (9) as a rate of
displacement in the center-of-mass system of coordi-
nates, which moves with the velocity coj.'" (t ) with
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respect to the laboratory-oriented system, one essentially
introduces an Eckart-type rotating frame which satisfies
a generalized Eckart-type condition, Eq. (8). [The
Eckart condition for the near-rigid limit is recovered by
the integration of Eq. (8) in which the r;(t)'s are substi-
tuted by constants ro s.]

Since 1(t) =1([r;(t)j), also mL' (t) =mL" ({r;(t)j)
[Eq. (5)] and Ej." (t) =Ej.' ([r;(t)j) [Eq. (6)]. Intro-
ducing an effective potential

Total LAO
'TT'

P f~w1 "ll rT ]hP(.)0
ll

, l ~l

l
I)l &' I'II' l» I& I I i

~

I, l, Ilipi~i I

VL([r;j) =EL' ([r;j)+V([r;j) (10)

and taking into account Eq. (9) [or Eq. (7)] we obtain

H=g ' +V, ([r,j)h, p;
i 2mi

=E'"'(hp;j)+ VL([r;j) .

VL(/r;j ) can be referred to as the rovibrational potential
surface. The internal motion of a rotating nonrigid sys-
tem is effectively driven by this surface. A continuous
path on it describes the continuous adjustment of the
system in terms of mL' ([r;j) and Ej' ([r;j) to its
changing configuration [i.e., changing I(/r;j )] to keep L
constant. Equation (11) suggests a new quenching pro-
cedure: By removing E'"' from the system one freezes
out its vibrations, preserving its L; i.e., preserving its
overall rotation. The minima of VL([r;j) correspond to
equilibrium structures of the rotating N-particle system.
These structures are attained when the net force acting
on every individual particle plays only the role of the cor-
responding centripetal force.

To illustrate the utility of the concepts and techniques
described above we present a few examples of their ap-
plication in isoergic dynamical studies of small clusters.
Figure 1 displays short-time (5 psec) averages of
different kinetic energies per particle as functions of time
in a rotating and nonrotating Ar~3 cluster (for computa-
tional details see Refs. 3 and 8). The pronounced
difference in patterns of the total kinetic energy [Fig.
1(a)] can be understood qualitatively by taking into ac-
count the differences in the topologies of V(/r;j) and of
VL(/r;j). That these topologies are indeed different fol-
lows from the fact that Ej." ([r;j)&const. The rotation
confines the cluster to distinct parts of configuration
space with lower potential (higher kinetic) energy as
compared to the case of no rotation. Each one of these
parts is capable of trapping the cluster for an appreciable
time and corresponds to a different rotating isomer; the
isomers were identified through quenching of the internal
energy. The appropriate counterpart for the kinetic en-
ergy of the nonrotating cluster is the internal energy of
the rotating cluster. In Fig. 1(b) the decomposition of
the total kinetic energy into the energy of the overall ro-
tation (rigid body) and the internal (vibrational) energy
is shown. A point to note is that although the total ki-
netic energy of the rotating cluster is higher, it is inter-
nally colder than the nonrotating cluster. The graphs
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FIG. 1. Short-time (5 psec) averaged kinetic energies per
atom as functions ofgime. T'otal energy Et,t = —0.379 x 10
erg/atom. (a) Total kinetic inergies for L =0 and 4.29x 10
erg sec. (b) Energy of overall rotation ("rigid body") and
internal energy for L =4.29 && 10 erg. sec. Roman numerals
denote diAerent isomers.

clearly indicate that changes in the rigid body (overall
rotation) accompany isomerization transitions. These
transitions may (such as for isomers I and II or III and
IV) or may not (such as for isomers II and III) be ac-
companied by changes in the internal energy (internal
temperature; here the temperature is referred to the
internal energies averaged over single isomers). That the
separation of the energies of the overall rotation and vi-
brations is indeed complete is illustrated in Fig. 2 which
displays typical pictures generated by the internal energy
quenching procedure. As the internal energy is extracted
the evolving nonrigid system and corresponding changing
rigid body consolidate into a rotating apparently rigid
(nonvibrating) body with an asymptotically constant
E ' [Fig. 2(a)]. That the result of the quenching is
indeed a rotating apparently rigid body is corroborated
also by Fig. 2(b). The erratic changes in the angle 0 be-
tween the co

' and the space-fixed vector L, reflecting
the nonrigid character of the cluster before quenching,
evolve, as a result of quenching, into a regular pattern
corresponding to the characteristic Poinsot nutation'
for a true rigid body.

Summarizing, we have presented an exact (no approx-
imations) general procedure for separation of the energy
of the overall rotation from that of the vibrational
motion in any N-body system irrespective of the degree
of its nonrigidity. The procedure is based on following
the exact time evolution of the system and it retains all
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latter could achieve only an approximate or incomplete
separation of the energies, is that it accomplishes the
separation of the energies, circumventing the problem of
separation of the coordinates It. effectively defines a ro-
tating frame which can be viewed as an Eckart-type
frame satisfying a generalized Eckart-type condition;
this condition is the requirement that the total vibration-
al angular momentum is zero. The scheme already
proved its power in our dynamical studies of small clus-
ters to be reported in more detail separately. We sug-
gest its semiclassical or quantal extensions (yet to be for-
mulated) may open a new avenue to the rovibrational
spectroscopy of highly nonrigid and/or highly energized
species.

This work was supported by the U.S. Department of
Energy, 0%ce of Basic Energy Sciences, Division of
Chemical Sciences, under Contract No. W-31-109-Eng-
38.

FIG. 2. Internal energy quenching history for isomer III
(each point is an average over 0.25 psec); quenching has been
performed every 50 psec. (a) Kinetic energies per particle.
(b) Corresponding evolution of the angle 8 between ro ' and
L=const. Inset: The structure of the quenched rotating clus-
ter; its potential energy is V = —0.663 x 10 ' erg.

the dynamical couplings; still it results in a complete in-

stantaneous decoupling of the energy of overall rotation
from those of vibrations giving zero Coriolis contribution
in the Hamiltonian. The distinction of the new pro-
cedure from the earlier ones, which also explains why the
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