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Nuclear Antiferromagnetism in a Registered 3He Solid
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Recent heat-capacity measurements of He adsorbed on graphite by Greywall and Busch are inter-
preted in terms of a triangular second-layer solid having J7XJ7 registry with respect to the first ad-
sorbed layer. The observed entropy change in the millikelvin region is well accounted for by an antifer-
romagnetic Heisenberg spin Hamiltonian in which only a subset of second-layer spins forming a Kagome
net are strongly coupled.

PACS numbers: 67.70.+n, 67.80.Jd, 75. 10.3m

Efforts to study nuclear-spin ordering in adsorbed
phases of He have focused in recent years on coverages
where layers beyond the first monolayer have formed a
solid. The second and possibly higher layers being looser
and less tightly bound to the substrate have a much
better chance of displaying exchange processes in an ac-
cessible temperature range. For the graphite substrate
Franco, Rapp, and Godfrin' examined a range of cover-
ages down to 3 mK and observed a large magnetization
peak at the coverage p=0.24 atom/A . Subsequent
measurements (at this coverage but lower temperature)
and theoretical analysis have confirmed earlier expecta-
tions that this second-layer spin system is a Heisenberg
nearest-neighbor ferromagnet on a triangular lattice.
Franco, Rapp, and Godfrin ' also observed a less prom-
inent anomaly at a significantly lower coverage, p=0. 18
atom/A, where earlier heat-capacity measurements by
Van Sciver and Vilches already showed evidence of a
second-layer melting peak. The existence of a solid at
this low density was questioned in a neutron-diAraction
study that failed to detect a second-layer Bragg peak.
This controversy has recently been intensified by the mil-
likelvin heat-capacity measurements of Greywall and
Busch which show not only consistency with the
higher-temperature measurements but reveal a sharp
peak at 2.5 mK. This unexpected finding is strongly sug-
gestive of the low-energy scale of particle exchange in an
ordered quantum solid. In this Letter I propose a struc-
ture for the low-density second-layer solid which has
J7XJ7 registry with respect to the first He layer. A
particularly appealing property of this structure is that it
naturally leads to a magnetic Hamiltonian that has a
hope of explaining a particular puzzle posed by the 2.5-
mK peak.

At the coverages of interest, the first He layer forms
a highly compressed triangular lattice which is probably
only very weakly modulated by the incommensurate
graphite substrate. Using the value p~ =0.114 atom/A
for the first-layer density given by the neutron-diff'raction
measurement of the lattice constant, Greywall and
Busch have determined the second-layer density
p2=0.064 atom/4 at the coverage where the entire
second layer has formed a solid. The latter density
should be compared with the density p~ =0.064 atom/A

in the submonolayer coverage regime where a triangular
structure having J3XJ3 registry with the graphite is
formed. In the first layer, and presumably also in the
second, an incommensurate triangular structure stabi-
lized entirely by crowding of the He hard cores first
forms at somewhat higher density. Registry of the
second layer with respect to the graphite is out of the
question since the modulation of the graphite- He poten-
tial at a distance z2 —5.2 A above the graphite plane'
has decayed by the factor exp( —Gz2) —10, where G
is the magnitude of the shortest in-plane reciprocal-
lattice vector of the graphite structure. When the possi-
bilities of registry with respect to the first He layer are
explored, the proximity of p2/p~ =0.56 to the fraction 7

immediately suggests the J7X J7 structure shown in

Fig. 1. The second layer decomposes into a Kagome net
of "A" sites (see Fig. 1) located at saddle points between
adjacent dimples in the first layer and "8"sites located
directly above a first-layer atom. The main benefit of
commensuration is conferred by the more favorable A
sites which outnumber the 8 sites three to one. The ac-
tual localization of atoms, even those on A sites, is prob-
ably helped to a large degree by the repulsion of the
neighboring hard cores. The amplitude of zero-point

FIG. 1. Proposed J7XJ7 structure of the second He layer.
Both the first-layer atoms and second-layer atoms (shaded)
form triangular lattices. The second-layer A sites have more
favorable potential energy than the B sites and form a Kagome
net.

1989 The American Physical Society 2405



Vor UME 62, NUMBER 20 PHYSICAL REVIEW LETTERS 15 MAY 1989

motion should therefore be very large and the associated
Debye- Wailer factor may well explain the negative
neutron-dift'raction results. ' '

Before I propose a specific form of spin Hamiltonian
for the J7&& J7 structure it is necessary to review the
low-temperature properties that this Hamiltonian will

hopefully reproduce. %'hile a cusplike "exchange peak"
in the heat capacity is in itself surprising, what is even
more troublesome is the fact noted by Greywall and
Busch that the corresponding entropy change (in units
of kz) falls short of the expected ln2 per second-layer
spin, being closer to the value 2 ln2. Of the two possi-
bilities that the spins are either (1) partially disordered
below the peak or (2) retain some order above the peak,
the second appears to be ruled out by the magnetization
measurements of Franco, Rapp, and Godfrin. ' These
show quite clearly that the anomaly already mentioned
above approaches the magnetization of free spins at high
temperatures. In addition, the magnetization is observed
to go below the free-spin value at lower temperatures.
This antiferromagnetic behavior is in sharp contrast to
the ferromagnetic signal at the higher coverage.

In the absence of four-particle and higher-order ex-
change processes' the spin Hamiltonian for the J7X J7
structure will have the Heisenberg form with separate
exchange constants J~~ and J~8 assigned to the two
kinds of near-neighbor spins. The magnetization mea-
surements require that at least J&~ has the antiferro-
magnetic sign since otherwise the ground state would
have a nonvanishing moment. Since the steric con-
straints imposed by the He cores play less of a role in

suppressing exchange in low-density structures such as
the J7&& J7, it can be argued that the antiferromagnetic
pair process will dominate the ferromagnetic three-
particle process. Accepting this as a justification for the
(positive) sign of J~g as well, there remains the problem
of deciding among the alternatives (1) J~~&&J~~, (2)
Jzz —Jz~, and (3) Jzz&& Jzz. Of these only choice (3)
appears to oAer an explanation of the "partial ordering
peak" seen in the heat capacity. The 8 spins, being un-
coupled, would already account for half of the missing
—,
' ln2 low-temperature entropy while frustration in the

ordering of the 2 spins on the Kagome net (see below)
may well provide the other half. As for a possible micro-
scopic explanation of the choice (3) one notes the follow-
ing: The exchange of an AA or AB pair is mostly inhib-
ited by their common near neighbors. In the case of AA
exchange one of these is an A atom while the other is a
8, while for AB exchange both "inhibitors" are A atoms.
Since the 8 atoms occupy manifestly less stable positions
with respect to the first layer, one expects them to be less
eft'ective inhibitors of exchange than A atoms. Thus an
AA pair attempting to exchange frequently find their
neighboring 8 atom "out of the way" with the result that
J~~ & J~~. In the following I will in fact assume
(without justification) that J~~ && Jzz and restrict my at-
tention to temperatures greater than Jggi'ka. Even with
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the 8 spins eft'ectively out of the picture, the remaining
system of antiferromagnetically coupled A spins is still
suf5ciently peculiar to require special attention.

The Hamiltonian for the A spins may be written in the
form

8=J$S;.Si,
(ij )

where J=J~~, the S; are spin- 2 operators, and the sum
is over nearest neighbors of the Kagome net. It is easy
to see that the classical analog of Eq. (1) has a ground
state with finite entropy. First, one notes that the
lowest-energy state for three classical Heisenberg spins
on a triangle of the Kagome net is the planar
configuration where the angle formed by any pair of
spins is 120 . This condition is easily satisfied on all the
triangles by selecting a particular such set of three spins
and assigning them to sites in such a way that neighbor-
ing sites are given difkrent spins. The ground-state en-
tropy of the three-state Potts model thus formulated is
then easily bounded away from zero. While it is not im-
mediately obvious what this implies for the quantum-
mechanical model (1), if nothing else it shows that the
usual spin-wave approach (which adds the fiuctuations
about a particular classical state) has problems from the
start. A difterent approach, which exploits special prop-
erties of the Kagome net, is suggested by rewriting Eq.
(I ) in the form of a sum over the Kagome net's constitu-
ent triangles:

H=JQ[2 P3p(S„,+S„,+S„,) —
4 l. (2)

r

In Eq. (2) the sum extends over all triangles r of near-
neighbor sites rl„r2, r3 on the Kagome net; J'3~2 is a
spin- 2 projection operator. In a number of recent stud-
ies' ' a projection-operator representation similar to
Eq. (2) has been used to construct a class of antiferro-
magnetic Heisenberg Hamiltonians having exotic ground
states. The present model would belong to this class if it
were possible to construct a "simple" state that was an-
nihilated by each of the projection operators in Eq. (2).
Anderson's' construction of a ground state involving
"valence bonds, "where spins are paired to form singlets,
is potentially useful in this context. All that is required
it that on every triangle of the Kagome net two spins
form a valence bond. Unfortunately, a simple counting
argument shows that this condition cannot be realized on
every triangle. If N, N2, and N3 are respectively the
number of sites, valence bonds, and triangles on the Kan-
gome net, then 2N =3N3 and Nz ~ N/2. Combining
these we have Nq ~ —,

'
N3 where equality corresponds to

a "dimerized state, " i.e., one where every spin forms a
valence bond with some other (near-neighbor) spin.
Thus, exactly one-quarter of all triangles in a dimerized
state will lack a valence bond and are naturally viewed
as "defects. " The expectation value of H in any dimer-
ized state, J(OX 4

——,
' x 4 )N3= —

—,
' JN, is a signifi-

cant improvement over the classical ground-state energy
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It is tempting to attribute the other half of the missing
2 ln2 entropy in the He experiment to a low-lying man-

ifold of states where the A spins are dimerized. Al-
though it has not yet been proven for the Kagome net, it
is probably true that the dimerized states are (excepting
boundary effects) linearly independent' so that the en-
tropy may be calculated by enumerating dimer cover-
ings. For the Kagome net, the latter reduces to a rather
trivial transfer matrix problem involving successive rows
of triangles. A triangle may be in any of four states
(three with valence bonds, one without). When these are
assigned to triangles row by row in the order l, 1', 2, 2',
etc. , as shown in Fig. 2(a), then the triangles in the
unprimed rows always have exactly two choices of state
whereas the triangles in the primed rows always have
their state uniquely determined. This gives two choices
for every two triangles (three spins) or an entropy of
(N/3 )ln2. Combining this with the entropy of the
(disordered) 8 spins, we arrive at an entropy per
second-layer spin of ( &

x —,
' + 1 x —,

' )ln2= —,
' ln2. While

neither this result nor the experimental determination of
a missing entropy by a linear extrapolation of the low-
temperature heat capacity has a clear interpretation,
the agreement in the two numbers is encouraging.

Implicit in the above entropy calculations was the as-
sumption that there is a good correspondence between
the dimerized states and a set of low-lying energy eigen-
states. A dimerized state 0 fails to be an energy eigen-
state because an application of H to + generates fluctua-

(a)

FIG. 2. (a) Decomposition of the Kagome net's triangles
into an ordered sequence of rows 1, 1', 2, 2', etc. , for the pur-
pose of calculating the entropy of dimer coverings (see text).
(b) Three valence bonds (double lines) in a star configuration
which when rotated 60' produce another dimerized state.

tions (next-nearest-neighbor valence-bond configu-
rations) in the vicinity of all its "defect triangles. "
While this will certainly renormalize the energy of defect
triangles, it may also introduce effective interactions
among them. The properties of the Kagome net, howev-
er, conspire to make the latter a relatively small effect.
To see this one notes that the three triangles surrounding
a defect triangle each have a valence bond and isolate, to
a first approximation, the fluctuations at different defect
triangles. The renormalization of a defect triangle can
be estimated by considering H„ the restriction of H to a
triangle r and its three neighbors, and a dimerized state
+0 having a defect at r. The relations

H„+p =
4 J'pp+ g J P&, ('p], H„P~ ) =

4 J
serve to define a two-level system consisting of +0 and a
normalized and orthogonal state +~. The ground state,
having energy ——, J, is given by the linear combination
(3+p —+~)/410. Aside from showing that the ampli-
tude of fluctuations is small, this calculation also pro-
vides a new upper bound on the ground-state energy of
the whole system, —,'2 JN. Presumably at the next level
of renormalization the energy expectation values will be-
gin to depend on the detailed valence-bond configuration
in a dimerized state.

A further consequence of the dimerized states' failure
to be energy eigenstates is the possibility of resonance.
At all except the very lowest temperatures this is prob-
ably a relatively unimportant effect since the require-
ment that two dimerized states be able to resonate "easi-
ly" turns out to impose strong constraints on the
valence-bond configuration. Two dimerized states which
differ by the fewest number of valence bonds are related
by the alternate arrangements of valence bonds around
the star shown in Fig. 2(b). Resonance alone lowers the
average energy of each of the three defect triangles in
this configuration by an amount 2'p J or about 60% of the
energy reduction achieved by the renormalization dis-
cussed in the previous paragraph. Although renormal-
ization (i.e., fluctuations into intermediate states) will
further reduce the energy of the resonating state, it is
perhaps more meaningful to compare just the energy
gain of resonance with the entropy lost by having all the
defect triangles organized into such star configurations.
Making the approximation that the latter is nearly all of
the (N/3)ln2 entropy of the dimerized states and taking

2p Jx 4 N3 = 4'p JN as the resonance energy gain by hav-

ing everywhere stars, one arrives at an estimate 0.11J/ktt
for the temperature above which resonance effects are
relatively unimportant. Below this temperature one
would expect a form of ordering where translational
symmetry is broken, say, by a crystallization of the stars
into a periodic array.

To supplement partially the qualitative arguments
above, the twelve-spin cluster with periodic boundary
conditions shown in Fig. 3 was diagonalized numerically.
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tentatively identified as registered by Greywall and
Busch, merits further experimental study because of its
potential for exhibiting unusual nuclear antiferromagne-
tism. If the model presented in this Letter is correct,
then lower-temperature magnetization measurements
should find, below 2.5 mK, a saturation consistent with a
state where three-quarters of the second-layer spins form
a singlet liquid while the remaining quarter remain free.
Provided the coupling between the two kinds of spins is
sufficiently weak, the model further predicts that the
singlet liquid will freeze into a "valence bond solid. "'
The latter would reveal itself in the heat capacity as a
phase transition, most likely first order, near 0.4 mK.

Conversations with D. Greywall, A. Dorsey, R. Good-
ing, C. Henley, and J. Sethna are acknowledged.

Note added. —Recent numerical simulations find a 1

K melting temperature for the J7x J7 structure in
agreement with experiment.

FIG. 3. Heat capacity in units of kz for the twelve-spin
cluster with periodic boundary conditions shown below the
curve. The unit of temperature is J/ks.

The heat capacity, computed directly from all 4096 ei-
genvalues, displays two prominent peaks (Fig. 3). Al-
though the seven lowest-lying states are singlets, there is
no clear evidence of a "spin gap"' in that a large num-
ber of triplet states contribute to the low-temperature
peak as well. Whether this reflects a deficiency in the
above analysis or simply is an artifact of the small sys-
tem size, one should treat with caution the interpretation
of the high-temperature peak as condensation into a
"singlet liquid. " Using the experimental peak tempera-
ture, 2.5 mK, to set either the scale of the maximum,
k&T/J 0.70, or the point where the entropy equals the
experimental peak entropy, knT/J 0.57, one obtains
J/ks-3. 5-4.5 mK. From this estimate, and the as-
sumption that things are not changes significantly by a
finite J~g, the low-temperature peak is placed at about
0.4 mK. The usefulness of high-temperature expansions
in extracting the parameters of the spin Hamiltonian is
doubtful because the experimental heat capacity is found
to be sensitive, at high millikelvin temperatures, to He
coverage and fails to show the leading 1/T behavior.
The two problems may be related and a peculiarity of
registered phases in general. For coverages slightly
below or above the ideal value, a registered phase will
contain vacancies or interstitials. It is likely that these
will locally melt the solid thereby generating sources of
liquidlike heat capacity that could dominate any 1/T
contribution.
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