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The problem of determining a scattering potential from measurements of the far-field intensity distri-
bution obtained in a set of scattering experiments is addressed within the Born approximation. It is
shown that this problem admits a conceptually and computationally simple approximate solution if the
incident and scattered radiation are mutually coherent in the far field and if the spatial resolution at
which the far-field distribution of total intensity is measured is sufficiently high. The resolution of the
inversion procedure is discussed and a computer simulation illustrating the proposed method is present-

ed.

PACS numbers: 42.30.Rx, 03.80.+r, 61.10.Pa

Introduction.—In this Letter we propose a novel
reconstruction procedure for estimating a scattering po-
tential directly from measurements of the far-field inten-
sity pattern measured in a set of scattering experiments
employing highly coherent incident plane waves. The ex-
perimental configuration is illustrated in Fig. 1 where a
scattering object is illuminated by a coherent plane-wave
beam whose cross-sectional area x/? is much larger than
the geometrical cross section ma? of the scatterer. The
intensity of the total wave field (incident plus scattered)
is recorded in the far field over the region of overlap of
the incident and scattered wave, forming, in effect, a
Gabor-type “hologram” of the scattered wave field.'
The scattering potential is then directly reconstructed
from a set of such holograms corresponding to incident
plane waves having varying directions of illumination.

The novel aspect of the inverse scattering procedure
proposed here is not the use of holograms to record the
scattered wave fields but is rather the manner in which
the holographic data are used to actually generate the
reconstruction. In the usual holographic formulation? of
the structure determination problem the amplitude and
phase of the scattering amplitude are first deduced from
the holograms and then used to compute the scattering
potential via the inverse Fourier transform that connects
the two quantities within the Born (or ‘“kinematic™) ap-

/— Recorded Intensity

/— Incident plane wave

FIG. 1. Experimental configuration. The intensity of the to-
tal wave field in the far field is recorded over the region of
overlap of the incident and scattered waves forming a “Gabor
hologram™ of the scattered wave field.
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proximation.?> In the method proposed here the recon-
struction is performed directly in an one-step procedure
from the measured far-field intensity distribution record-
ed on the “holograms” and thus avoids entirely the so-
called phase problem.® This approach has pronounced
advantages over the usual approach because of the
difficulty of actually deducing the phase of a scattered
wave field from a recorded hologram. Although the
hologram certainly contains this phase information there
is no simple way of obtaining the phase in an unambigu-
ous manner for arbitrary and unknown scattered wave
fields.

The central idea behind the reconstruction procedure
is the observation that the mathematical process of in-
verting the Fourier-transform relation that exists be-
tween the scattering amplitude and the scattering poten-
tial can be viewed as being equivalent to superimposing
the real images generated from a large number of holo-
grams taken at different viewing angles relative to the
scatterer.*> Since the real and virtual images generated
from a Gabor hologram are formed in different regions
of space’ it follows that an approximate reconstruction
can be obtained from a superposition of the total image
fields (real plus virtual plus background) generated by a
set of such holograms. The reconstruction so obtained®
will be in error due to the overlap of the virtual and
background images with the real image. The superposi-
tion of the virtual and background images then forms a
“noise” term whose magnitude is dependent on the dis-
tance from the scatterer at which the holograms were
recorded. A major goal of the current Letter is to show
that the magnitude of this noise term decreases mono-
tonically with measurement distance and becomes negli-
gible if the holograms are recorded in the far field. In
this limit then, the reconstruction generated by the inver-
sion process becomes identical to the theoretically op-
timum solution generated from both the amplitude and
phase of the scattering amplitude.

The Letter includes the calculation of an upper bound
for the integrated squared error between the estimate of
the scattering potential generated by the procedure and
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the optimal estimate generated from the exact scattering
amplitude, and a computer simulation illustrating the
proposed approach for a spherically symmetric square-
well potential.

Reconstruction procedure.— The far-field coherent in-
tensity generated by the interaction of a monochromatic
plane wave e with a scattering potential ¥(r) is

given by
2 1 do
. —_l ==
| w(ps;so) | T do
e ikp
+2Re e 'ks"spf(s,so)eT , (D

where we have denoted the observation point in the far
field by r =ps and where Re stands for the real part. In
this equation f(s,so) denotes the scattering amplitude in
the direction of the wunit vector s and do/dQ
=| f(s,s0) | 2 is the differential scattering cross section.
Within the Born approximation the scattering amplitude
is related to the scattering potential via the equation*>

fls,s0) =~ — tﬁ(k(s—so)) , 1))
where
VK = [drvine K 3

is the three-dimensional spatial Fourier transform of the
scattering potential.

Solving Eq. (1) for the scattering amplitude we obtain
L do ik (sg's—1)p
p dQ

_f*(s’sO)ezik(so's—l)p, (4)

f(s,s0) = D(s,s0) —

where
D(s,s0) =pe™ 7 °{| y(ps;so) | 2— 1}, (5)

and where the approximation (4) requires that the total
wave field y(ps;sp) be measured in the far field kp>> 1.
The reconstruction method that we propose is to simply
approximate the scattering amplitude in Eq. (2) by
D(s,sp); i.e., we compute the unknown scattering poten-
tial using the Born approximation and assuming that

f(s,s0) = D(s,s0). The reconstruction so obtained will
be in error due to the absence of the last two terms on
the right-hand side of Eq. (4) in the expression for f.
These terms correspond to a superposition of background
and virtual image fields produced by a set of Gabor holo-
grams and will be shown to be negligible as long as the
far-field condition kp>>1 is satisfied.’

One way of estimating the contribution of the last two
terms on the right-hand side of Eq. (4) to the reconstruc-
tion is to employ the so-called filtered backpropagation
algorithm*® which generates the reconstruction within
the Born approximation as a superposition of real images
formed from the backpropagation of the measured
scattering amplitude into the region of space occupied by
the scatterer. If the scattering amplitude is approximat-
ed by D(s,sp) in this algorithm then the resulting recon-
struction will consist of two contributions: (i) The op-
timum reconstruction ¥V generated from the backpro-
pagation of f, and (ii) a noise term generated from the
backpropagation of the last two terms on the right-hand
side of Eq. (4). It can be readily shown that the ex-
ponentials in Eq. (4) have the effect of displacing the
central location of the images formed from backpro-
pagating the last two terms in this equation by a distance
of p and 2p, respectively, from the true scatterer loca-
tion.® Thus, if p is sufficiently large, the overlap of these
images with the optimum reconstruction will be small,
and the resulting reconstruction will be a good approxi-
mation to the optimum reconstruction within the support
volume of the scatterer and will approach the optimum
reconstruction in the limit where p— oo,

The magnitude of the contribution of the last two
terms in Eq. (4) to the reconstruction can also be es-
timated in a straightforward manner using the Fourier
inversion integral. To this end we denote the optimum
reconstruction generated using f(s,s0) by ¥ and the ap-
proximate reconstruction generated using D(s,so) by V
and conclude from Eq. (4) that, within the Born approxi-
mation,

V()=V(E)+N(), (6)

where N(r) is an error term whose Fourier transform is
found from Egs. (4) and (2) to be given by

N(k(s—s0)) = — ﬁ | 7 (k (s —s0)) | 2 ~/WPRIKC30 12 L D (4 (5 —g0))e 1 @RIKG=s0 17 )

where we have used the identity |s—so|2=2—2s-s,.
The error in the reconstruction is thus the inverse
Fourier transform of the function N(K) evaluated over
the set of spatial frequencies K=k (s —sy) determined
from the set of scattering experiments. If we assume
that the set of scattering experiments includes all in-
cident directions so and those scattering directions s lying
in a cone that is centered on s and which has a solid an-
gle of Q steradians (see Fig. 1), we find that this error is
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given by
N(r)=—-l—f d3KN(K)eKr ®)
)3 JK=(a/m"k e,
where N(K) is found from Eq. (7) to be
N(K) =—(1/4rp) | P(K) | 2e ~i(e/20)K?
+V*(K)e TWROK - (9)
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Now although the integral in Eq. (8) is taken over the
interior of a sphere of radius (Q/z)'"?k the integrand
will, in fact, be band limited to a much smaller volume
due to the rapid oscillation of the two exponentials in the
expression for N. In particular, a straightforward calcu-
lation shows that the effective volume of integration in
Eq. (8) is the interior of a sphere of radius Ko=2ak/p,
where a is the radius of the effective support volume of
the scattering potential. It then follows that the in-
tegrated squared error between the approximate and op-
timal reconstructions YV and V is bounded above accord-
ing to the equation

3
e=fd3r|‘\7(r)—l7(r)|25—§%5 [k-::—] M2, (10)

where M =max | N(K) | and where we have made use of
Parseval’s theorem to evaluate the error bound. The er-
ror is seen to tend to zero as p— o and in this limit,
then, the approximate reconstruction YV becomes equal
to the optimal reconstruction V generated from the
scattering amplitude.

In order to verify the conclusions drawn above con-
cerning the magnitude of the error as a function of p, the
contribution of the second term on the right-hand side of
Eq. (9) to the noise N(r) was computed for a number of
p values for the case of a spherically symmetric square-
well potential, ¥(r) =1 if |r| <a and a zero elsewhere.
Only the second term was considered since this term will
yield the greatest contribution to the error for large p
values and because, as mentioned earlier, the first term
can be removed entirely by making a separate measure-
ment of the differential scattering cross section. The
transform N and the noise term N are both spherically
symmetric for this example and Eq. (8) reduces to a
one-dimensional integral transform that is readily com-
puted using a numerical integration routine. The results
of the numerical integration are presented in Fig. 2
where we show the real and imaginary parts of the ap-
proximate reconstruction YV for a potential having a ra-
dius @ =10A, for the ratio of the measurement distance
to the potential’s radius p/a equal to 10, 50, and 100,
and for a measurement solid angle Q =2x. It is seen
from this figure that both the real and imaginary parts of
the error decrease monotonically with increasing p/a and
become negligible when p/a reaches a value of 100.
Since the Fourier transform is linear it is clear that simi-
lar results would be obtained for any linear superposition
of spherically symmetric potentials.

Resolution and sample spacing requirement.— The
reconstruction procedure proposed in this paper requires
that the intensity measurements be performed suf-
ficiently far removed from the scatterer that the integrat-
ed squared error ¢ given in Eq. (10) be small. The re-
quirement that the measurement distance p be large
places a restriction on the resolution of the reconstruc-
tion procedure due to the fact that the incident plane
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FIG. 2. The (a) real and (b) imaginary parts of the approxi-
mate reconstruction V(r) of a spherically symmetric square-
well potential of radius @ =10A plotted as a function of the ra-
dius r=|r| using quarter-wavelength sample spacing. In the
simulation Q =2, corresponding to a spatial-frequency cutoff
of v2k. The solid curve corresponds to the optimum recon-
struction generated from the complex-valued scattering ampli-
tude.

wave must physically overlap the scattered wave in order
for the method to be applicable. Assuming, as above,
that the set of scattering experiments includes all in-
cident directions sg and those scattering directions s lying
in a cone that is centered on so and which has a solid an-
gle of Q steradians, then the optimal reconstruction V is
a low-pass filtered version of ¥, band limited to within a
sphere of radius x =(Q/z) 'k in Fourier space.>? A
rough measure of the “resolution” of the reconstruction
procedure is then provided by the minimum resolvable
spatial wavelength of the scattering potential A =2x/x
=1/(Q/x) "2, where A =2n/k is the wavelength of the
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scattered wave field. Referring to Fig. 1 we find that if
p> 1 then Q = n(l/p)?, leading to a value of A =(p/I)A,
wnere / is the radius of the circular cross section of the
incident plane wave.

The cross-sectional area of the probing plane wave
also determines the minimum sample spacing A required
to measure the far-field intensity without introducing
aliasing. This minimum sample spacing is equal to one-
half of the minimum fringe spacing in the far-field inten-
sity distribution |w(ps;se)|? across the incident wave
beam diameter 2/ (see Fig. 1) and is readily found to be
equal to A in the limit where p>>1.

We mention finally that the resolution of the inversion
procedure can be improved by employing a coherent off-
axis reference beam rather than the direct (incident)
wave in the measurement process. By this means the in-
terference pattern (hologram) between the reference and
scattered wave can be measured well outside the region
of overlap of the incident and scattered wave and, in
principle, the procedure can be extended to include the
backscattered wave and thus yield the theoretical limit of
resolution of a half wavelength.
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