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Arnol'ti DifFusion in Two Dimensions
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We consider the relativistic interaction of a charged particle with obliquely propagating waves of arbi-
trary polarization. We show that an arbitrarily small wave packet composed of waves with parallel
phase velocity comparable to the speed of light (e.g. , s1ow extraordinary mode) can, under certain condi-
tions, accelerate particles to unlimited energy through a process of Arnol'd diffusion in two dimensions,

PACS numbers: 05.45.+b, 03.20.+i, 52.50.Gj, 52.65.+z

The problem of wave-particle interaction in a strong
magnetic field, Bp, is of fundamental importance in plas-
ma physics and has been studied by various authors. '

Recently, Zaslavskii et aI. studied the nonrelativistic in-
teraction of a particle with an electrostatic wave packet
propagating perpendicularly to the magnetic field. Such
a system has 1 2 degrees of freedom. They showed that
under certain conditions such an interaction results in a
web structure in phase space through which the particle
may be accelerated to large energies, by a process analo-
gous to Arnol'd diAusion in systems with three or more
degrees of freedom. Soon after, however, Longcope and
Sudan showed through a relativistic treatment of the
above study that particles can only be accelerated up to a
critical energy by a wave packet above a critical ampli-
tude. Strictly speaking, the relativistic mass dependence
on energy leads to the appearance of Kolmogorov-
Arnol'd-Moser (KAM) surfaces and the web only exists
up to a finite energy. Here, we consider the interaction
of a charged particle with an obliquely propagating wave
packet of arbitrary polarization. We show that the
correct relativistic limit of the problem studied by
Zaslavskii et al. occurs at angles a=cos '(1/n), where
n is the refractive index of the plasma, and not at
a=90'. We find that Arnol'd diAusion to infinite ener-
gies is again possible for waves of infinitesimal ampli-
tude. Furthermore, we show that the autoresonance ac-
celeration mechanism ' ' ' for a parallel propagating
wave with n=1 is a special case of our general treat-
ment.

The relativistic Hamiltonian of a charged particle of
mass m and charge q in the presence of an obliquely
propagating wave packet is

N N

A = g A;+ xBpey, (lc)

with k~; =0, k&, =k;sine;, kII; =k;cosa;, y; =k&,x
+k II;z

—co; t, and N the number of waves in the wave
packet. We allow A2; to be positive or negative depend-
ing on whether the wave is right-hand or left-hand polar-
ized, respectively. The system described in (la) has, in

general, more than two degrees of freedom, but reduces
to two if n; cosa; is the same for all the waves. Then we
can eliminate the time dependence in H through the gen-
erating function Fq=[z —t(to;/k~~;)]P, '. In order to fa-
cilitate the analysis further, we make a series of canoni-
cal transformations: P~ is a constant of motion and is
transformed away through F2=(x cd/qBp)P, '. The—n,
P,, appears only in ttf;

=k &,x'+ k IIiz'+ 6;, where 6;
=k&;cd/qBp is a constant for each wave. Next, we ex-
pand the new Hamiltonian to first order in wave ampli-
tudes. The final step is a transformation of (x,P„) into
the zero-order action-angle variables (O,J), where
P„=(2 I q I JBp/c) 't cosO and x =(2Jc/

I q I Bp) 't sinO.
It is convenient to use the perpendicular momentum P&
and the gyroradius p instead of the action J, depending
on the context. These are related to J through
P& = (2

I q I JBplc) ' and p = (2Jcl I q I Bp) ' . Using
standard Bessel function identities' to expand products
like sin 0cos y; and dropping the primes from the
transformed variables, we have

where the scalar and vector potentials of the ith wave are
+; =Np; sing;,

(lb)
A; =(A ~; cosa; sintil;, A2; costlt;, —A ~; sina; sing;),

and

H = [(cP —qA) '+ m 'c'] 't'+qe,

2 P,
H() =mc

mc n; cosa;

p2 +p2
yp= 1+

m c

(la)
N i' =+~

H =Hp(P~, P, )+ g g Z; t sin(lO+ k~~;z+ 6;), (2a)
i =] I= —~

where

(2b)

Z — 2 q@'pi
l' ( mc

mc
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For simplicity, we consider particles with P~ =0. We
first examine the one-wave case. We let i' 1, and we
drop the sum over i in (2a). Suppose there is a reso-
nance at a specific value of l =l ~. We transform to a ro-
tating frame through the generating function F2 =
[z+(l)/k~~()0]P, +OJ, where the new variable k~~(z =
k ~~) [z+ (l (/k ~~ ( )&] measures the slow rotation around
that resonance. Averaging over the fast angle 0=0 gives

H =Hp(P~, P, ) +Z) ), sin(k~~)z ) . (3)
The fixed points of H are solutions of 8H/8P, =0 and
c)H/Bz =0. The resonance condition is given by

P Q k)()) 8Z) /

yp
— '

(n ( cosa ( ) —l
~

(4)
mc co( co( Qp,

Here 0 is the nonrelativistic gyrofrequency. Expansion
of H around the elliptic fixed point (k ~~) z„P, , ) yields

H=H(P~ „P,, )+ —, G(P, P, ,)—
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where F= -+Z~, I, and

+ 2 F(kii(z —kp(z, )

8 Z((,
G (P)+G ()) (5)
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FIG. 1. Phase-space structure in the P„-P~ plane. One wave
with m[=40, a[=80, Ho=me, and n] cosa[ =1. Notice the
large first-order islands which can accelerate particles
coherently to very large energies.
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F and G are evaluated at the elliptic fixed point. The
system is called intrinsically degenerate ' if

~
G (

(
~

G(')
~

and accidentally degenerate if the inequality
is reversed. The trapping width is given by hP, =2

F/G
~

' and the bounce frequency by coq =k~~)n
x FG['

We see from (2b) and (4) that if n) cosa( =1, the sur-
faces of zero-order Hamiltonian and zero-order reso-
nance are parabolic and either lie on top of each other (if
Hp/mc = l ) 0/co ( ), or do not intersect anywhere (if
Hp/mc ~l (0/co(). Thus, there can be at most one reso-
nance in this case. We note that the nonrelativistic in-
trinsic degeneracy condition, namely co& =l] 0 and e
=90', has changed to co( =1)0 (mc /Hp) and a(
=cos '(1/ n) in the relativistic case.

When co) =l(A, mc /Hp, we can plot contours of con-
stant h,H =H —Hp which unravel the phase-space struc-
ture (Fig. 1). Note, however, that any untrapped region
below the lowest-lying first-order islands in phase space
would not be described by surfaces of constant H. The
phase space is very similar to the nonrelativistic case
studied by Fukuyama et al. and others, with the notable
exception that the relativistic first-order island widths
are several orders of magnitude larger than the nonrela-
tivistic ones. The similarity in the phase space is not too
surprising since hH has the same exact form in the two
cases.

The autoresonance particle acceleration ' ' ' by paral-

lel propagating electromagnetic waves with n=1, which
has recently' ' been discussed in relation to the Cyclo-
tron Autoresonance Maser (CARM), is a special case of
the relativistic intrinsically degenerate case discussed
here. For a=0 and n=1, the motion is integrable and
G=O to all orders, resulting in an infinitely large trap-
ping width.

We now resume our study of the wave-packet case.
We consider a wave packet comprising of waves all satis-
fying the conditions n;cosa; =1 and co; =l;Qmc /Hp.
This constitutes the relativistic analog of the system
studied by Zaslavskii et al. Following an averaging
procedure as in the one-wave case, we are able to use the
same generating function to get the averaged Hamiltoni-
an:

H =H p(P~, P, ) + g Z; ~,. sin(k ~~;z ) . (6)

The position of the fixed points and formulas for the
trapping width and the bounce frequency are obtained
from a generalization of the expressions for the one-wave
case. The number of fixed points, however, increases in
general and the structure in phase space becomes more
complicated.

Now we can show that the formation of web is limited
below a critical energy in the case when a; =90 . The
transition from accidental to intrinsic degeneracy for the
case of an electrostatic wave packet occurs when

(klan z) I

(7)
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FIG. 3. EAect of l =0 wave. Parameters are the same as in
Fig. 2(b) except that cu~ =0 with itio; =26&o~ for i ~ 1. The
squared region has the web structure studied by Zaslavskii et
al. (Ref. 7). The region beyond the squares is due to the finite
number of waves.
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FIG. 2. Stochastic web. The wave packet comprises sine
waves with nl costi =1 k&&'=k&j Np' = Ppj Al =4 and col

=411. (a) Two waves. (b) Ten waves. The structure for the
case ~here the wave packet comprises cosine waves ~ould be
similar to what is shown here, but the elongated regions ex-
tending to large energies would cover a broader area.

Noting that p ~ yo, it can be easily shown that for
a; —90 the left-hand side of this inequality increases
faster with energy than the right-hand side. Therefore,
for a given amplitude, although the system is intrinsical-
ly degenerate at low energies, it quickly becomes ac-
cidentally degenerate at higher energies, which in turn
results in the destruction of the web. If, on the other
hand, n; cosa; =1, the system would remain intrinsically
degenerate at all energies.

In order to examine the phase-space structure, we
again plot contours of constant-AH surfaces. Such plots
are more time e%cient than particle runs and reproduce
the phase-space structure very well as long as the wave

amplitudes are well below the stochasticity threshold.
They are preferable to the solution of the mapping equa-
tions where use is made of a 6 function to simplify the
equations of motion which in turn obscures the physical
importance of the number of waves used in the wave
packet. We emphasize that hH in the case of an electro-
static wave packet has the same form as the nonrelativis-
tic one describing the Zaslavskii et al. web. Thus, one
would expect to get the same web structure in the rela-
tivistic case as in the nonrelativistic case.

There are, however, some differences arising from the
fact that l; ~ 1 in the relativistic system, whereas l; can
range from —~ to +~ in the nonrelativistic case. Fig-
ure 2 illustrates the efI'ect of the finite number of waves
on the phase space. As N is increased, the fixed points
above a certain energy bifurcate and the large first-order
islands of the one-wave case are broken up into smaller
islands, with the bifurcation starting at small energies
and spreading to larger energies as N is increased. Once
the bifurcations start at a given point in phase space,
they quickly saturate as a function of N and stochastic
layers are formed in that region [Fig. 2(b)]. We distin-
guish three regions in Fig. 2(b): (1) A region covered by
squarelike structures; these are similar to the nonrela-
tivistic stochastic web. (2) The X-shaped large-scale is-
lands which allow particle acceleration on a faster time
scale than that through region (l). These structures are
present as long as the I; =0 term in Eq. (7) is absent.
This can happen if the electrostatic potential is composed
of sine waves or if it is composed of cosine waves with
the l=0 wave either absent or not satisfying the reso-
nance condition. Figure 3 illustrates the change in the
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FIG. 4. The stochastic web showing the eA'ect of unequal
k~ s at a fixed angle (a; =a, ).

web structure had the l =0 resonance been present.
Note, however, that l =0 resonance cannot be satisfied in

the relativistic intrinsic degenerate case. (3) A third re-
gion which is the part of phase space extending beyond
regions (1) and (2) and looks much like the phase space
of the one-wave case.

The symmetry of the web is determined by the fre-
quency separation between consecutive harmonics in the
wave packet, t5, co =(/J. l) II mc /Hp, and the extent of the
web in momentum space is determined by N. If N
regions (I) and (2) extend to infinite energy, in contrast
to the a =90' case where the web structure is limited to
a small energy even in the presence of an infinity of
waves. We can observe immediately one of the key
features of the relativistic treatment: In contrast to the
nonrelativistic case one does not need many waves to
reach large energies through the stochastic web. This is

due to the fact that the relativistic trapping widths are
several orders of magnitude larger than their nonrela-
tivistic counterparts. If the waves have the same electric
field rather than electrostatic potential amplitudes, then
the effect of addition of higher frequencies is reduced
and the phase space resembles that of a smaller-N case.

If one relaxes the condition k &, =const, the phase
space acquires a very different structure (Fig. 4). One
can still observe a small-scale structure, reminiscent of
the Zaslavskii et a/. web. However, this web is disected
by a set of elongated islands that inhibit considerably the
penetration of particles to large energies. This large-
scale structure is four symmetric due to the fact that the
spacing between l s is a multiple of 4. It is a remnant of
the large first-order islands of the one-wave case that did
not break into smaller ones after the addition of more

waves but were deformed into almost impenetrable sepa-
rations between parts of the phase space. For k&, &k~~
and a random distribution of e s, the phase space has a
noiselike structure and no web is present.

In summary, the necessary condition for the formation
of the stochastic web in the problem of wave-particle in-
teraction in a strong magnetic field is for the system to
be intrinsically degenerate [Eq. (7)]. For a=90', the
zero-order resonance condition reads to; =l;II/yp and it
is clear that the relativistic mass increase destroys the
resonance to zero order, rendering the system acci-
dentally degenerate. However, when n;cosa; 1 and m;

l;Qmc /Hp, the resonance surface and the Hp sur-2

face become coincidental and the change with action in

yo is balanced with the change in P, . This allows the
formation of a web in phase space to arbitrary energies.
We also showed that the relativistic stochastic web is ob-
tained under more realistic conditions than the nonrela-
tivistic case. Detailed application of these ideas will be
presented elsewhere.
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