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Resonances and Diffusion in Periodic Hamiltonian Maps
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Chaotic diff'usion in periodic Hamiltonian maps is studied by the introduction of a sequence of Markov
models of transport based on the partition of phase space into resonances. The transition probabilities
are given by turnstile overlap areas. The master equation has a Bloch band spectrum. A general exact
expression for the diff'usion coefticient D is derived. The behavior of D is examined for the sawtooth

map. We find a critical scaling law for D, extending a result of Cary and Meiss. The critical scaling
emerges as a collective eff'ect of many resonances, in contrast with the standard map.

PACS numbers: 05.45.+b, 52.25.Fi, 71.10.+x

Evidence for the existence of a diffusion coefficient D
in Hamiltonian maps has been provided by extensive nu-

merical and analytical calculations. ' The analytical
studies give explicit formulas for the diffusion coefficient
in the form of infinite sums that, for most parameter re-

gimes, converge rapidly to give useful and accurate esti-
mates of D. However, the methods employed in these
studies do not have a transparent connection to the de-
tails of the dynamics.

An important step in rectifying this situation was the
introduction of Markov models for systems of two de-
grees of freedom to simulate the actual dynamics near
the critical breakup of Kolmogorov-Arnol'd-Moser
tori. These models are based on a partition of phase
space into regions (called states) which are separated
from each other by "partial barriers" formed from can-
tori. Unfortunately these models are not easily general-
ized to the case of large Auxes, or to systems where all
Auxes are of the same order of magnitude. In these cases
it is unclear how to choose a countable subset of cantori
for a partition of the phase space.

Resonances give a natural partition of phase space.
A resonance may be defined as a region of phase space
bounded by two "partial separatrices" formed from or-
bits homoclinic to a hyperbolic periodic orbit. Recall
that an orbit is homoclinic to a given periodic orbit if it
converges to the given orbit both forwards and back-
wards in time. The total Aux exchanged per iteration by

the resonance with the rest of phase space is determined

by the turnstiles associated with the two partial separa-
trices. The partial Auxes exchanged by any two reso-
nances are determined from the areas of overlap of their
turnstiles, as illustrated in Fig. 1.

In this Letter we introduce a Markov model of trans-
port based on resonance dynamics in Hamiltonian maps
on the cylinder of the form

pt+i pt+Kf(xi) xt+1 =xt+pt+1

where f(x + 1)=f(x), and K is a "stochasticity" param-
eter. Such maps are periodic in p when the phase space

is the cylinder —
2

~ x & 2, —~ & p & ~. The unit

cell is the torus —
2 & x & 2, 0~p & 1. We will as-

sume the inversion symmetry f(—x) = f(x), so that-
the map (1) is reversible. An example of a map with

this symmetry is the standard map with f(x)
=sin(2trx)/2tr. The periodicity in p makes the Markov
model analogous to a periodic crystal in solid-state phys-
ics. ' In Eq. (8) below we give a general exact expres-
sion for D in terms of the basic parameters of the model.
As a check of this theory, we calculate D explicitly for
the sawtooth map, " a completely chaotic system with

f(x) =x, discontinuous at x = ~ —,
'

. The results are
compared with numerical measurements of D in Figs. 2
and 3. For K near the critical value K, =0, (8) gives a

scaling behavior which agrees very well with numerical
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I.IG. 1. Schematic illustration in symmetry coordinates of
the turnstile overlap (crosshatched) of the 0/1 resonance with
the 1/2 resonances in two unit cells. Notation in the text.

results. We also find that formula (8) agrees well with
numerical results away from criticality, and for K
provided a suitable partition is chosen. We present here
the main results and outline their derivation. Details will

be given elsewhere. '

We may define a Markov model for the dynamics by
specifying a partition of the phase space into a countable
number of nonintersecting subsets of the phase space,
called states, and then specifying transition probabilities
between states. Our Markov models are based on a par-
tition of phase space into resonances, and subsets of reso-
nances generated by repeated forward or inverse iterates
of the map (1). We denote a unit cell in phase space by

l=0 + 1 + 2, . . . , (l~p&l+I in A/), and
choose in Qo a set of R resonances with winding num-

bers v, =m, /n„, r =1, . . . , R. The elements of the corre-

sponding set in II/ are the translates (r, l) of these reso-
nances, which have winding numbers v„~ =v„+l.

The states of the simplest models are the islands, n,
states in resonance (r, l). These states are labeled by
(r, s;I) with s=0, 1, . . . , n„—1, where s=0 corresponds
to the island in some arbitrarily chosen gap of the hyper-
bolic periodic orbit, and s & 0 to the island in the sth
iterate of this gap. The largest gap usually lies around
some vertical line x =x, called the dominant line. We
choose the s=0 or "main" island to lie in this gap, and
we associate with it lower and upper turnstiles, as shown
in Fig. 1.

A more refined partition may be obtained by taking
the nth forward or inverse image of each period n reso-
nance. This will divide each island into 4 or 6 (depend-
ing on K) states, for a total of 4n or 6n states in each res-
onance. Each main island will be split into 4 or 6 main
states, with 4 or 6 turnstiles. In this partition r will

range from 1 to 4R or 6R.
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FIG. 2. D(K)/JKD~/ for the sawtooth map: numerical re-
sults (&), and results from formula (8) with use of all reso-
nances of orders ~ 21 for the simple resonance partition
(lower curve) and from the first-refined partition described in

the text (upper curve).
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FIG. 3. D/Dv/ vs K for the sawtooth map: numerical results
(&), converged results from formula (8) with use of the reso-
nance partition (lower solid curve), the first-refined partition
based on the same resonances (upper solid curve), and the
second correlation results of Cary and Meiss (dashed line).

This process may be repeated, producing an arbitrarily
fine partition of the phase space.

Given any partition in this sequence, we denote by A„,
, and h, 8' " the areas of the connected chaotic re-

gions in one state, in the lower and in the upper half
turnstiles, respectively. Consider the overlap of the out-
going half turnstile of state (r, l), with the ingoing half
turnstile of state (r', l'). The area of the connected
chaotic region within this overlap may be written, by
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translational invariance of (1), as O(r, r';I' —I). It gives
the fraction of the flux d W„=hW +d W„' which is
transferred per iteration from the state (r,0;I) to the
state (r', 1;I'), or (r', 0;I') if n„= 1; see Fig. 1. We define
O(r, r;0) =A„—68'„and A„=g„ t —O(r, r';I'). Then for
E & K, and finite R the phase-space partition is not com-
plete and 2, (A„but as R ~, 4, 4, . According
to the Markov assumption the transition probability
from (r, O;I) to (r', 1;I') is defined by

P(r, O r', 1;I' —I)—:O(r, r';I' —I)/2„,

namely by use of A„ instead of A, . Within a given reso-
nance (r, l), n„& 1, the transition probability from
(r,s;I), s & 0, to (r, s';I) is given by 6,+~, . All other
transition probabilities are zero. Then

g P(r, s r', s;I') =1
r', s', l'

2''
b(r, s;I

~
t) = „dkP(r, s;k

~
t)e (3)

Let us denote by P(k ~
t) the vector with S components

P(r, s;k ~ t), where S is the total number of states per
unit cell. Using the translational symmetry, (2) and (3),
we obtain the master equation in the k representation
P(k ~

t+1) =&(k)P(k
~
t), where &(k) is the SxS tran-

sition matrix (or characteristic function) ' with elements

as required.
The master equation of our model is

b(r', s';I'~ t+1) = QP(r, s r', s';I' —l)b(r, s;I
~
t), (2)

r, s, l

where b(r, s;I
~
t) is the probability of being in state

(r, s;I) at time t. This equation, together with a particu-
lar partition, defines a Markov chain. ' We introduce
the Block quasimomentum (k) representation, ' P(r, s;
k

~
t) of b(r, s;I

~
t):

[+(k)1,,, ;, , =(1 6,„~)(1—8, ,0)6, , 6, +1, +li, 06, ~QO(r, r';l)e'"/A„.
l

(4)

Here 6, 1—= 1 for n„=l. For j=1, . . . , S, the eigenval-
ues k~ (k) of +(k), defined by

&(k)e~ (k) =X~ (k)e, (k),
form S bands, analogous to the Bloch bands in a periodic
crystal with S degrees of freedom per unit cell. It fol-
lows from (4) and (5) that

~
X~(k)

~

(1 for all j and k.
For R large enough the Markov chain (2) is irreducible
and aperiodic, ' and obviously the same is true for the
chain corresponding to &(0). We observe that there ex-
ists an equilibrium distribution given by the eigenvector
[el(0)]„,=A„. It follows' that X&(0) =1 is always a
nondegenerate eigenvalue, and the chain is ergodic.

The diff'usion coefficient D for the model is given by

D = lim g (p„,.i
—p„, .o)'b(r, s;I ~

t),1

I —~ 2t r,s, l

where p„,.l =p, ,-0+ l is a "momentum" assigned to the
state (r,s;I). Independently of the choice of p, , 0 and

p, ,, 0 we find that

where the overdot stands for diff'erentiation with respect
to k. This follows from (3), (5), and the fact that
Xl(0) =0. To see that A, l(0) =0, differentiate (5) once to
find that

[I —+(0)]et (0) =ih —Xl (0)e~ (0),
where

h„, =6, lh„=8, ~BIO(r', r;I),
r', l

and P„h„=O from the symmetry f( —x) = f(x). By-
summing over all S components the result follows. In
solid-state-physics terms, we may thus interpret D in (6)

as the inverse of the hole eA'ective mass at the top of the
highest Bloch band Xl (k). '

To obtain a more explicit expression for D, we
differentiate (5) twice at k=0. Using (4) and summing
over all (r,s) we find

D = g I'O(r, r';I) —2ig[el (0)],og, /71,
,r, r', l r

(8)

where AT =g„n„A„ is —the total area and g„=g„ tlO(r,
r';I). Since kl(0) is a nondegenerate eigenvalue, we may
always solve (7) for e&(0) up to an arbitrary complex
constant times the vector e~ (0). Finally, since

g„g, =g„h, =0, we see that D as given in (8) does not
depend on this constant.

We illustrate formula (8) in the case of the sawtooth
map, for which all the overlaps may be found analytical-
ly. ' Our numerical measurements of D(K) near K=O
have been fitted by a power law aE with a =0.0504
~ 0.0003 and b =2.494+ 0.0008. Figure 2 shows

D(K)/JKDqt (Dqt =K /24 is the quasilinear value of D)
for small E as obtained numerically and from formula
(8) with use of all resonances with n„(21 (the lower
curve), and from the refined partition generated by tak-
ing the nth inverse image of all resonances with n„~ 21
(the upper curve). We see that D(K) as given by (8) ex-
hibits a threshold behavior. As we reduce K, the
turnstiles of some neighboring resonances cease to over-

lap; as the value of K for which this happens depends on
the number of resonances we denote the value by K, (R).
For K & K, (R) the Markov chain is reducible and (8)
gives D =0. For K, (R) (K & KT(R) our expression for
D has not converged and we find that D —[K K, (R)] . —
The threshold value KT(R) is an estimated lower limit of
convergence of (8), in the sense that the addition of more
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resonances does not change the value of D significantly
for K & KT(R).

Both partitions predict the proper scaling exponent b,
but the refined partition gives a better estimate of the
prefactor a; we find D=1.15K in good agreement
with the numerical result of D = 1.25K

The scaling seems to arise as a collective eff'ect of
many resonances with approximately equal partial
fIuxes, in contrast to the standard map. For very small
K —K, (R) one partial flux is much smaller than the oth-
ers: It scales like [K —K, (R)], leading to the (in-
correct) scaling observed in D below threshold.

Figure 3 shows D/D~t as a function of K for the reso-
nance partition (lower solid curve) and for the refined
partition (upper solid curve) together with the result of
Cary and Meiss (dashed line) and numerical results. In
the case of the resonance partition we see just a hint of
oscillations that are in phase with those of the numerica1
results, but their amplitude is far too small. However,
refining the partition improves the theoretical estimate
dramatically. The oscillations arise as the lowest part of
the 0/I resonance turnstile periodically passes through
translates of itself as K increases. '

In conclusion, it appears that formula (8) gives good
results for all values of EC. The predictions of the Mar-
kov model are improved considerably by extending the
phase-space partition to the interior of the resonances.
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