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Coagulation with a Steady Point Monomer Source
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We investigate the phenomenon of coagulation with constant feed-in of monomers at a single point.
For spatial dimension d & 4, the steady-state cluster concentration, c(r), obeys Laplace's equation, while
for d & 4, the steady-state concentration of clusters of mass k a distance r from the source scales as
ck(r) —k 'p(kr '), with z =4 —d, z=(d —6)/(d —4) for d & 2, and z=2, z= I+d/2 for d (2. For
the linear chain, we outline an exact solution for which ck(r) —k t p(p), with p(p) —p t for p
=k/r 0, c(r) —r ', and the number of clusters increases with time t as lnt. The effects of cluster
drift and the presence of a sink are also considered.

PACS numbers: 82.20.—w, 05.40.+j, 82.70.—y

With a steady feed-in of monomers, a coagulating sys-
tem can reach a steady state. ' This process typifies a
wide variety of physical situations, ranging from the
mass distribution of stars, to cluster distributions in

chemical reactors. Theoretical approaches to elucidate
these phenomena include mean-field theories, suitably
modified to account for the input, ' field theoretic
treatments of annihilation reactions, and analytic solu-
tions in one dimension. These treatments all assume
that the source is spatially homogeneous. For such an
input the steady-state concentration of clusters of mass k
has the form ct, -k P, and in mean-field theory P= —,

'

for reaction kernels with homogeneity index equal to
zero. ' This value of P appears to be a ubiquitous feature
of steady-state coagulation in the mean-field limit.

In this Letter, we investigate steady-state coagulation
in the presence of a spatially localized monomer input.
We envision that this describes a smoke plume, where
there is a steady input of small clusters at the lower end
of the plume, with coagulation occurring as the smoke
clusters rise. The distance from the source is therefore a
relevant parameter in describing the cluster size distribu-
tion in this process. Concomitantly, our study also de-
scribes how the steady state of pure diffusion from a
point source, i.e., the solution to Laplace's equation, is
modified when clusters can coalesce.

Our study is based on an idealized lattice model of
coagulation in which a new monomer is introduced at a
single point (the origin) with probability s at each time
step, and all the previously introduced clusters in the sys-
tem undergo one random walk hop (Fig. 1). If two clus-
ters happen to occupy the same lattice site, they are
combined into a single point cluster whose mass is the
sum of the masses of the two incident clusters. We im-

pose a constant coagulation rate by taking the merging
of clusters to be independent of their masses. If the
number of clusters is considered without regard to their
masses, then this reduces to the two-body reaction A +A

A with a point source.
First consider our model within the framework of a

Bc(r t) D t) ~ ~
itc(r t)r

8t r" ' 8r Br

c (r, t), d&2;
+s6(r) —k' c(r, t)/lnc(—r, t), d =2;

(«) d &2.

Here d is the spatial dimension, and the terms on the
right-hand side account for diA'usion, the localized
source of "strength" s (which is "turned on" at t =0),
and the reaction, respectively. The form of the reaction
term can be justified heuristically by noting that the re-
action rate for a cluster at position r is proportional to
c(r, t)/z, where z is the time between successive col-
lisions. A collision can be expected when the particle

i t" monomer

time= i,'

( i+k-1) t" ronomer

time = i+k-1',

time= t T

~(i+k-1)th and ith

FIG. 1. Coagulation with a point monomer source on the
linear chain. Illustrated is the event A;, ;+I,—~(x, t) in which (i)
a monomer is injected at the origin at the ith time step, (ii) the
monomer is at z at time step i + k —1, when the (i + k —1)th
monomer is injected, and (iii) these two monomers then
coalesce and arrive at position x at time t.

continuum reaction-diffusion equation. Within this ap-
proximation, the concentration of clusters at a distance r
from the source at time t, c(r, t), obeys
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visits 1/c(r, t) distinct sites. Using well-known results'
for the number of distinct sites visited by a random walk
in time t, S(t), the collision time z follows from the con-
dition S(r)—1/c(r, r), leading to the reaction term in

Eq. (1).
We now determine the condition for which the reac-

tion term in Eq. (1) is relevant. For no reaction, the sys-
tem obeys Laplace's equation and c(r, t ~) decays as
r for d & 2, while for d ~ 2 there is no steady
state. In the limit of no reaction, the concentration
about the point monomer source is isomorphic to the
electrostatic potential of a point charge. For sufficiently
large d, diAusing particles do not "see" each other far
from the source, so that the Laplacian solution should
continue to hold at large r, i.e., c(r, t ~)—r
Substituting this into Eq. (1) and asymptotically balanc-
ing the various terms shows that this solution is con-
sistent only for d & 4. Thus d=4 is a critical dimension,
above which the reaction can be neglected, except for a
trivial rescaling of the source strength, i.e., the source
"charge. "

For d & 4 the reaction term stabilizes a steady state
even for d &2. The power-law behavior for d &4 and
the d= 1 solution to Eq. (1), c(r) —1/(r+rp) with rp a
constant, suggest a power-law solution for 1 &d &4.
Substituting a power law and matching the leading be-
haviors in Eq. (1) gives

r 1~d &2
c(r, t ~)—' r lnr, d =2;r, 2&d &4.

(2)

lnt, 1 ~d &2;
, (lnt)', d =2;

2&d&4;
d &4.

(3)

The linear growth for d & 4 is a consequence of the La-
placian solution, c(r) —r " . However, for d & 4,
the reaction is sufficiently strong to cause the total num-
ber of particles to grow more slowly than linearly in
time. This corresponds to zero flux of clusters at large

(The case of d=2 has to be treated separately because of
the logarithmic factor in the reaction term. ) This solu-
tion corresponds to a strongly localized concentration
profile about the source with a radial flux of clusters that
vanishes as r

After the source is turned on, the leading edge of the
concentration profile will advance diffusively, i.e., as Jt.
The region ahead of this front is essentially empty, while
the concentration approaches its steady-state value
behind the front. Consequently, the total number of
clusters in the system, N(t), can be estimated by
N(t) —fp

'r 'c(r)dr. This gives

distances, or equivalently, a source charge which has
been renormalized to zero.

For coagulation in the presence of a steady point
source, the reaction-diffusion equations that describe
ck (r), the steady-state concentration of clusters of mass
k at position r, are

=4 —d, = (d —6)/(d —4) . (6)

As discussed above, these exponents hold generally for
2 & d &4, and for d 2 in the limit of a vanishingly
small reaction rate. For d &2, a scaling analysis of Eq.
(4), with the order of the reaction term modified similar
to Eq. (1), leads to the exponent values z=2 and r =1
+d/2.

As a useful consistency check, we also solve Eq. (4) in
one dimension by introducing the generating function
G(u, r) =P&=& c&(r)(u —1) into the equation to yield
(for D =K=s =1)

G"+ 2 G + (u —1)6'(r) =0,
with solution,

(7)

G(u, r) =—12 2 6
r2 r 1 —u

~ i/3- —2

, r&0. (8)

This generating function can be written as r
x@(r(1—u) 't ), whose inversion yields the scaling form
ck (r) —r p(kr ), with the following limiting behav-
ior,

I 5/3 I pp 3 .
cq (r) —' —2/3 —3 3k r, k&(r

r '
ct, (r) +—g c;(r)c,(r)

dr 2 i+j=k
—Kck(r)c(r)+s&(r)8k ) =0, (4)

with c(r) =gk ct, (r). (Because of mass conservation, the
mass density obeys Laplace's equation. ) We expect that
Eq. (4) describes the system for d & 2. For d & 2, how-
ever, we anticipate that the order of the reaction term
should be modified, following Eq. (1). However, Eq. (4)
does describe the asymptotic kinetics correctly in less
than two dimensions, in the limit of a vanishingly small
reaction rate.

By comparing with the classical rate equations for ir-
reversible coagulation, we see that r in Eq. (4) plays the
dimensional role of a time. Consequently, one expects
that the scaling Ansatz

ck (r) —k 'p(kr ')
will describe the steady-state behavior. Here k*(r)—r'
is the typical size of particles at position r in the steady
state. Substituting this scaling form into Eq. (4),
balancing the asymptotically dominant terms, and also
exploiting mass flux conservation yields the exponent
values
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This coincides with the scaling solution given in Eqs. (5)
and (6).

For a unit reaction rate, i.e., clusters reacting whenev-
er they meet, the impenetrability of the clusters permits
an exact solution by mapping the interacting-random-
walk system to a single random walk in two dimensions
with boundary conditions imposed by the manifestations
of the reaction. " The solution found by this approach
obeys scaling, but with non-mean-field exponents. We
now outline the ideas underlying this solution. We first
treat an infinite system with isotropic diffusional cluster
motion, and then generalize to a system in which the
clusters undergo drift, and to a finite system with an ab-
sorbing sink.

To calculate the steady-state cluster concentration at
position r, c(r), and the total number of clusters, N(t),
we label the particle which is injected at the ith time step
after the source is turned on as the ith monomer.
Without loss of generality, the clusters are restricted to
the half line r & 0. When a coalescence occurs, the new-

ly formed cluster is defined to retain the larger of the two
labels of the incident clusters, i.e., a cluster is "killed"
only upon collision with its left-hand-side neighbor. Let
P; (r, t) be the survival probability of the ith cluster at
position r and time t, and let P;(t) =g, P;(r, t). Then
c(r) =lim, g =~P;(r, t), while N(t) is the sum of the
survival probabilities of all monomers injected before
time t, and thus equals g =~ P;(t).

Denoting the coordinate of the ith clusters as x ~ and
that of its left neighbor as x2, then P;(r, t) maps onto the
survival probability of a random walk in two dimensions,
with absorbing boundary conditions on the line xi =x2
and refiecting boundary conditions on the line x2=0
(Fig. 2). (The latter condition arises because the left
neighbor must always be to the right of the origin. ) This
problem, in turn, coincides with the survival probability
of a random walk in a planar quadrant with absorbing

X2"
bing

absorb

Xl Xl

reflecting

FIG. 2. Mapping of the collision process in one dimension to
a bounded random walk in two dimensions. For the random
walk in a quadrant with absorbing boundaries, the survival
probability within the quadrant can be determined by introduc-
ing the images shown.

boundary conditions on the two bounding axes. By ex-
ploiting the image method (Fig. 2), we find

c(r) —1/r, N(t) —lnt . (1O)

ck(r) = lim P(a k-mer on r at time t)

= lim g P(ith k mer on r -at time t) .
oc;=1

From probability theory"

To compute the steady-state concentration profile of
clusters of mass k, ck (r), we generalize Spouge's formal-
ism, " which was developed for irreversible coagulation
on the linear chain, to allow for a steady monomer input.
For this task, the following notations are helpful. Define
P(A) to be the probability that the event A occurs. Let
A; ~ (r, t) be the "ele. mental" two-particle collision event
that the ith and jth monomer are on the same site r at
time t. Further, define the ith k-mer to be a cluster of
mass k which contains the ith and the (i+k —1)th
mon omers. Then

P(ith k-mer on r at time t) =P(A;;+k ~(r, t)) —P(A( )1+k —)(r, t)) -P(A;;yl, (r, t)—)+P(A; ~;~k(r, t)), (11)

thus expressing cl, (r) in terms of the P(A; ~ (r, t) ), and
the latter quantity can be calculated by mapping to an
equivalent property of a two-dimensional random walk.

As an example, for the event A;;+k-~(r, t) to occur,
the ith monomer must first diffuse a (arbitrary) distance
z from the source when the (i +k —1)th monomer is in-
jected. These two monomers Inust later collide, with the
reaction product diffusing to x at time t (Fig. 1). The
probability of this event can therefore be formally writ-
ten as

P(A;;+I, ~(r, t)) =2 g a(r, t —(i +k —1);z)yl, —~(z),
z=0

(12)

where yl, (z) —(1/Jk )e is the Gaussian probability
distribution for the ith monomer to start at the origin

and reach z in k time steps, and a(r, t;z) is the collision
probability that a particle initially at z coalesces with a
particle initially at the origin, with the reaction product
being at r at time t. In analogy with Spouge, " this col-
lision probability can be written as

a(r, t;z) =[y, (r z)+ y, (r+z)) g y, (w—)
w=r

r —z r+z
+y, (r) g + g y, (w), (13)

w z w z

where the two additional terms involving +z (compared
to Spouge's result) arise from the restriction of the sys-
tem to r &0.

From Eqs. (11)-(13) and with considerable algebra,
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we find the basic result

cp(r) -k 't'It (p),
where p =k/r, and where the scaling function is

P(p) =„2ban '(1+z)+tan '(1 —z) —tr/2]

x (z /p —z /p —1/4)e

(i4a)

(14b)

The typical cluster size k*(r) scales as r, which follows
from the recurrence of one-dimensional random walks.
A particle that reaches r will have coalesced with essen-
tially all the r monomers subsequently injected into the
system. From Eq. (14b) the asymptotic behavior of
y(p) is

I/2-3/p, p-
tt(t )-'

5tpp, p 0,
giving rise to the limiting behavior of ct, (r)

(is)

k/r, r»k ~/ (i 6)

exp[ —z g/16],

We can generalize the above results to the case where
there is a superimposed outward radial cluster drift, in
addition to diffusion. In the reaction-diffusion equation,
this entails adding a convection term to Eq. (I). In the
absence of reaction, the steady-state concentration now
decays as r ' ", and substituting this concentration
profile in the reaction-convection-diffusion equation
shows that the reaction is irrelevant for d & d, =2.
Below two dimensions, if one assumes a power-law form
for the concentration profile, self-consistency is obtained
if c(r) —r "t . Following a similar line of reasoning for
the coagulation process with an imposed drift, one finds
the exponents in the scaling Ansatz for ct, (r) to be—z =r ' =d/2 —l.

In one dimension, the arguments that led to Eq. (10)
now yield

N(t)-t '", t»1/v;
(i7)

c(r) —r ', r» I/v,
where v is the drift velocity. In comparing Eq. (17) with
(10), there is more empty space for newly injected mono-
mers when drift occurs. This retards the reaction pro-
cess and leads to c(r) decaying more slowly and N(t) in-
creasing faster than in the case of no drift.

For an absorbing sink at r =L, the interesting quantity
is the output flux, Ct, (L), i.e., the rate at which k-mers
reach the sink. For this case, the new calculational
feature is that the collision function a(r, t;z) requires the
solution of an infinite image problem, arising from the
boundedness of the interval. For purely diffusing parti-
cles we find that Ck(L) scales as k N(g), where g
=k/L, and where &(g) has the asymptotic behavior

In the limit of large p, Ck(r) in the finite system coin-
cides with the Aux at r in an infinite system. This follows
because coagulation predominantly occurs near the ori-
gin, and a distant sink will have very little inAuence.
However, to form a k-mer for large g (k »L ), a parti-
cle must survive of the order of k time steps in order to
collect k monomers before hitting the sink. The survival
probability of a random walk in an interval of length L
for k time steps, exp[ —constxk/L ], therefore yields
the large g controlling factor of &(g) in Eq. (18). We
also obtain the number of particles in the interval, N(L),
by noting that for large L, the behavior of c(r) is not
strongly affected by the sink, i.e., c(r)—r ' for L r—
»1. Since the primary contribution to N(L) comes
from the region near the source, we can write N(L)
=f drr ' —lnL.

In summary, we have presented new results for steady-
state coagulation in the presence of a point source of
monomers. From the diff'usion-reaction equation, we
deduce three regimes of behavior: (i) d & 4, the pure
diffusion regime; (ii) 2 & d & 4, the diffusion-reaction re-
gime; and (iii) 1 ~ d & 2, the strong-reaction regime.
For cases (ii) and (iii) the scaling Ansatz ck(r) —k
xp(kr ') accounts for the behavior of the steady-state
concentration profile of clusters of mass k. In one di-
mension we outlined an exact solution to the problem
which is consistent with the scaling Ansatz. We also
studied the effects of cluster drift and the effects of a
sink. The k dependence of ct, (r) is generally very
different from a homogeneous-source system. Many of
our results are confirmed by numerical simulations.
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