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Comment on “Dynamical Symmetries of the Per-
turbed Hydrogen Atom: The van der Waals Interac-
tion”

In a recent Letter! Alhassid, Hinds, and Meschede re-
ported the dynamical symmetries and the analytic spec-
trum of the hydrogen atom in a generalized van der
Waals potential ¥V =y(x2+y2+82z2), where y and B
are constants. Here ﬂ=\/§ corresponds to the instan-
taneous van der Waals potential and 8 =0 corresponds to
the diamagnetic potential. They also found a universal
adiabatic invariant and in particular dynamical sym-
metries for the three special choices =2, 1, and 5.

We wish to point out here some more interesting prop-
erties of this potential. If we limit our discussion for
convenience to L, =0 states and introduce semiparabolic
coordinates? so as to avoid the Coulomb singularity
problem, u=@+2z)"2 v=(r—2z)'2 then the classical
(dimensionless) Hamiltonian

H=p*2—1/r+y(x*+y?+p%2)=E

of the problem becomes that of a set of two coupled sex-
tic anharmonic oscillators,

H=3@2+P)+ L w2 +v)+A4us+v°)
+Bw*l+uvt)=2¢, ()

where u =(—2E) "y, v=(—2E)"*y, A=yp*/4, B=y
x (1 —p2%/4), and e=1/(—2E) ',

By applying Painleve singularity analysis to the equa-
tions of motion of the above coupled-oscillator system>
we locate at least three integrable cases: (i) B=0, (i)
B=34, and (ii) B=154, besides the trivial case
A=B=0. In fact, for the B=0 case the system decou-
ples into two independent sextic oscillators and in the
original variables this case corresponds to 8=2, y arbi-
trary. For B=3A4 in (1) we have the second integral of
motion I,=(uP, —vP,)? and this case corresponds to
B=1, vy arbitrary, which is the spherically symmetric
case in the original variables. For the B=154 case we
have

L=[P,P.+uv+64w*+v*)uv+20A4u3v3]

as the second integral of motion which corresponds to

B=%, v arbitrary. Thus the three integrable cases
B=0, 34, and 154 (8=2,1,%) of our analysis corre-
spond exactly to the special cases where dynamical sym-
metries exist as pointed out by Alhassid, Hinds, and
Meschede,' thereby bringing out the reason behind the
existence of these symmetries.

The system of classical coupled oscillators (1) is
simpler to analyze numerically. Integrating it using the
Runge-Kutta-Gill fourth-order method, we plotted the
Poincaré surface of section (v=0,P, > 0) of a single tra-
jectory in the u-P, plane and found that the system
shows chaos-order-chaos transitional behavior when the
value of B is varied. We fixed the value of 4 at +. For
all negative values of B the system becomes fully chaotic.
For B=0, we have regular behavior. For values of B in
between 0 and 0.5 the invariant tori break into small is-
lands, implying small-scale manifestation of chaos. For
B=0.5 the system shows regular behavior again. For
values of B in between 0.5 and 2.5 we again notice
small-scale manifestation of chaos in the form of islands.
For B=2.5 we again get regular behavior. For values of
B in between 2.5 and 3.5 the tori again break into is-
lands, while for all values of B greater than 3.5 the sys-
tem shows fully chaotic behavior. Thus this problem
may turn out to be an interesting physical system with
which to study chaos-order-chaos behavior experimental-

ly.
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