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Comment on "Dynamical Symmetries of the Per-
turbed Hydrogen Atom: The van der Waals Interac-
tion"

In a recent Letter' Alhassid, Hinds, and Meschede re-
ported the dynamical symmetries and the analytic spec-
trum of the hydrogen atom in a generalized van der
Waals potential V=@(x +y +p z ), where 7 and p
are constants. Here P =&2 corresponds to the instan-
taneous van der Waals potential and P =0 corresponds to
the diamagnetic potential. They also found a universal
adiabatic invariant and in particular dynamical sym-
metries for the three special choices P =2, 1, and —,

'
.

We wish to point out here some more interesting prop-
erties of this potential. If we limit our discussion for
convenience to L, =0 states and introduce semiparabolic
coordinates so as to avoid the Coulomb singularity
problem, p=(r+z)'~, v=(r —z) '~, then the classical
(dimensionless) Hamiltonian

0=p /2 —1/r+y(x +y +P z ) =E

of the problem becomes that of a set of two coupled sex-
tic anharmonic oscillators,

H = —,
' (P'+P')+ —,

' (u'+v')+W(u'+v')

+ 8(u 4v '+ u 'v 4) =2m,

where u =(—2E)' p, v=( —2E)' v, A=yP /4, B=y
x(1 —P /4), and e=l/( —2E) '

By applying Painleve singularity analysis to the equa-
tions of motion of the above coupled-oscillator system
we locate at least three integrable cases: (i) 8=0, (ii)
8=3A, and (iii) 8= 15M, besides the trivial case
A =8=0. In fact, for the 8=0 case the system decou-
ples into two independent sextic oscillators and in the
original variables this case corresponds to P =2, y arbi-
trary. For 8=3M in (1) we have the second integral of
motion I2 = (uP„—vP„) and this case corresponds to
P= 1, y arbitrary, which is the spherically symmetric
case in the original variables. For the 8=152 case we
have

Ip=lP„P, , +uv+6A(u +v )uv+20Au v l

as the second integral of motion which corresponds to

P = —,', y arbitrary. Thus the three integrable cases
8=0, 3A, and 15M (P=2, 1, —, ) of our analysis corre-
spond exactly to the special cases where dynamical sym-
metries exist as pointed out by Alhassid, Hinds, and
Meschede, ' thereby bringing out the reason behind the
existence of these symmetries.

The system of classical coupled oscillators (1) is

simpler to analyze numerically. Integrating it using the
Runge-Kutta-Gill fourth-order method, we plotted the
Poincare surface of section (v =O, P„, & 0) of a single tra-
jectory in the u-P„plane and found that the system
shows chaos-order-chaos transitional behavior when the
value of 8 is varied. We fixed the value of A at 6 . For
all negative values of 8 the system becomes fully chaotic.
For 8=0, we have regular behavior. For values of 8 in
between 0 and 0.5 the invariant tori break into small is-
lands, implying small-scale manifestation of chaos. For
8=0.5 the system shows regular behavior again. For
values of 8 in between 0.5 and 2.5 we again notice
small-scale manifestation of chaos in the form of islands.
For 8=2.5 we again get regular behavior. For values of
8 in between 2.5 and 3.5 the tori again break into is-
lands, while for all values of 8 greater than 3.5 the sys-
tem shows fully chaotic behavior. Thus this problem
may turn out to be an interesting physical system with
which to study chaos-order-chaos behavior experimental-
ly.
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