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Monte Carlo Calculation of Elementary Excitation of Spin Chains
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An efticient Monte Carlo method is proposed to calculate the elementary excitation spectrum of quan-
tum systems. The lowest energy with arbitrary momentum is obtained by the projector Monte Carlo
method. This is applied to the spin- 2 and -1 Heisenberg antiferromagnetic chains with length 32. For
the S =

2 case, the spectrum coincides completely with that of des Cloiseaux and Pearson. For the S= l
case, the spectrum has a gap at momentum n as was predicted by Haldane. The value of the gap coin-
cides with the calculation of Nightingale and Blote. The spectrum satisfies a variational relation with
the structure factor.

PACS numbers: 75.10.3m, 05.30.—d, 75.40.Mg

For the calculation of quantum systems the exact di-
agonalization method is used in many cases. But in this
method the size of the system is very restricted. So
quantum Monte Carlo methods are used for larger sys-
tems. The partition function approach is used widely for
finite temperature properties. ' On the other hand, the
projector Monte Carlo (PMC) method is also power-
ful especially for the investigation of the ground state.
The Green's-function Monte Carlo method can be re-
garded as a kind of PMC method.

We assume that all the off'-diagonal elements of the
Hamiltonian H are zero or negative. Then all the ele-
ments of the ground-state wave vector have the same
sign. The ground state is represented by a distribution of
random walkers. In many cases the Hamiltonian H has
translational symmetry and there is the translation
operator T which satisfies

HT=TH, T =I,
where N is the length of the system. All the eigenvectors
of H can be classified by the momentum K:

H I l K) =Et(K) I l;K), T I l K) =e'
I l K),

K=2~k/IV, I =0, 1,2, . . . , lV-i,
E, (K) ~ E2(K) ~ .

where I l;K) and Et(K) are the lth eigenvector and
eigenvalue in K-momentum states. Usually the ground
state of H belongs to the subspace K=O. If one can cal-
culate the lowest-energy eigenvalue for a given momen-
tum, it is just the elementary excitation. The exact diag-
onalization method can calculate the elementary excita-
tion spectrum of small systems. But no one has succeed-
ed in calculating the elementary excitation spectrum by
the Monte Carlo method.

In the PMC method the ground-state energy is given
by the following formula:

where
I go) and &yo I are some arbitrary vectors. If

I go)
and &yo I

are states with momentum K, we will have the
lowest-energy eigenvalue of momentum K. The operator
e ' serves as a projector to the lowest-energy states
with momentum K. So it may be possible to get the ex-
citation spectrum in the PMC method. One choice of
& yo I and I go) with momentum K is as follows:

&yo I =&y
I
R( K), I 4o) =R(K)

I 0;1) . (4)

Here &titI is the vector whose elements are all 1 and
R(K) is a diagonal operator which satisifies

?R(K) =e'"R(K) .

As I0;1) and &titI are zero-momentum states, I go) and
&yo I are K-momentum states. Corresponding to Eq. (3)
we should consider the following function:

&~IR( K)He '"R—(K) Io;1)

The function B(K,z) should approach the lowest-energy
eigenvalue of momentum K unless &yo I and I (o) are or-
thogonal to this state. In the PMC method Io;1) is
given as a distribution of walkers. As R(K) is a diago-
nal operator, each walker has a value of R(K). After
time z it should be multiplied by a new R ( —K).

Hereafter we restrict ourselves to the Heisenberg anti-
ferromagnetic chain (HAC):

N

0=Jg Si"St~+1+S(Sy+1+SS;+i,
(7)

Stv+1 =81, N =even .

This commutes with the true translation operator T (?'St
=St+1) and the total spin in the z direction S'=giSt'.
In the PMC calculation of spin systems a walker is rep-
resented by a set of z-component spin values on N sites:

(sf, s2, . . . , stv), st =S,S—1, . . . , —S.
&yo I He

El(0) = lim
Yo e I Co

(3) In this representation oA'-diagonal elements of H are
non-negative. By making the unitary transformation U
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=exp(n'i+t=, „,„s'), Eq. (7) and T become as follows:

IV

H =UHU ' = g h(,
I=1

old set:
L L'"'"1&0) =pa! i, z+0), a = gw(i, z)/L, (13a)

hI =J( Sl Sl+I Sfsf+I+Slsl+1)
T=UTU ' =expbri(NS —S')]T.

(9a)

(9b)

Then all the oA-diagonal elements of H become nonposi-
tive and the PMC method is applicable. It should be
noted that the true momentum shifts by z from K, if
NS —S' is odd. To get the ground-state energy we use
Eq. (3). At the beginning of the calculation ! (o) is ap-
proximated by a set of L random walkers and the
weights of the walkers are assumed to be the same. The
wave function is approximated by

L

p =WE z l z (10)

Here ! i, z) and w(i, z) are the ith walker and its weight
at time z.

The calculation of the ground-state wave function is
done by the following two processes:

(l) Operation of exp( t3zH) for—walkers. —Here hz
is some small time interval. Repeating this we get e
The operator exp( —AzH) is approximated by

ht, H3= g ht. (1 lb)
l =even I =odd

The matrix exp( —t3. zH~/2r) is decomposed to a product
of a stochastic matrix and a diagonal matrix:

fexp( AzH~/2r)lit~ —
ptjq~, gptj = I .

l
(12)

The operation of the diagonal matrix multiplies the
weight by qj. The stochastic matrix lptJ] makes a jump
from j to l with probability ptj. The spin configuration
of a walker is changed by this process. As Hl is decom-
posed into N/2 pairs, the change of spin configuration
is done for each spin pair. The operations of
exp( —hzH2//r) are also done in the same way.

(2) Reconftguration of weights As time .p—roceeds
some walkers become very heavy and the others very
light. We should make a new set of walkers so that the
existence probability is proportional to the weight in the

[exp( —hzH ~/2r)exp( —AzH2/r)exp( —AzH ~/2r)]",

(1 la)

!i, z+ 0) =!j(i), z) .

Here j(i) should be determined by

(13b)

J
h (j—1)~ i —a ( h (j), h (j)=—g w (i, z)/a, (13c)

where a is a random number between 0 and 1. So, light
walkers are eliminated and heavy walkers breed. The to-
tal number of walkers is the same. A walker l after the
reconfiguration has an ancestor j(l) before the reconfig-
uration. The necessity of a reconfiguration process was
pointed out by Hetherington. We sometimes do the
reconfiguration process when the variance of weights be-
comes large.

By repeating the above processes many times we get
an approximate ground-state wave function:

L

! 0;1)= lim g !i, z') w (i, z'),
oci =1

(14)
w(i, z') =w(i, z') gw(l, z'),

where w is the normalized weight. Taking the long-time
average with respect to z' we have a more accurate wave
function. From Eq. (3) E~(0) is

L

E)(0)=g g(y! H!i, z')w(i, z') g1. (15)
r' i=1

To calculate Eq. (6) we adopt the following operator
as R(K):

1V

R(K) = g (St' —S)exp(iKi) . (16)
l=l

Apparently this is diagonal and satisfies (5). The ith
walker at time zl has the jth walker at time z2 as its
ancestor. We call j(i;z~, z2) the ancestor function It.
satisfies

J(t~zl~z3) J(J(ti l~zz2)iz2~z3)~ z1 z2+ z3 ~

The ancestor function can be constructed by successive
substitution ofj (i;z, z hz) The —wave .function e
XR(K)!0;1) is represented as follows:

L

lim g w(i, z')R(j (i;z', z' —z),K, z' —z)!i, z'), (l8)
c i=1

where R(i,K, z') =(i,z'! R(K)!i,z') Taking the. average

!
with respect to z' we have a more accurate wave func-
tion. Then B(K,z) defined in (6) becomes

Z.'Zi=i&y! R( K)H! i, z')w(i, z')—R(j (i;z', z' —z), K, z' —z)

Q, Q;=)w(i, z')R(i, —K, z')R(j (i;z', z' —z),K, z' —z)

So we can calculate B(K,z) by a small modification of the ground-state energy calculation. We only need to store the
complex value R(i,K, z') for each walker i and ancestor function j (i;z', z' —d z). Very old data of these quantities are
not needed because we do not calculate B(K,z) at very large z

Here we show some results of our calculation for 5'=0.
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TABLE I. Estimated values of E—i(K)/J of S= —,
' and I

HAC with %=32. For S = —, , the exact value is calculated by
the Bethe-Ansatz equation in Ref. 8. The agreement is very

good. For S=1, the value 44.45 at k =16 should be compared
with —(lowest energy)/J in S'= I subspace. According to NB
(Ref. 5) it is 44.4364(40).

18

x g 4 ~ — Tt/7
Estimated

S=—1

2

Bethe-Ansatz
S=1

Estimated

x x x x x

FIG. 1. Function 8(K, z)/J for N =14, S = I HAC at K=0,
rr/7, 2x/7, 4x/7, and z. Ei(K)/J values are plotted as horizon-
tal bars (Ref. 7). MC results and exact diagonalization results
are compared. The coincidence of E|(K) and 8(K, z) at
rJ =1-2 is very good. But the statistical error grows exponen-
tially as r becomes large. .

0
1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

14.202 ( I )
13.891(30)
13.595(28)
I 3.314(34)
I 3.061 (44)
12.852(59)
12.698(77)
12.572(95)
12.52(11)
12.55 (11)
12.61(11)
12.748 (92)
12.923 (77)
13.163(62)
13.442(52)
13.740(49)
14.053 (82)

14.2065
13.8953
13.5972
13.3204
13.0753
12.8712
12.7159
12.6153
12.5732
12.5913
12.6688
12.8026
12.9876
13.2165
13.4804
13.7688
14.0683

44.875 (3)
43.93(16)
43.56 (12)
43.18(11)
42.84(12)
42.55 (14)
42.35(16)
42.23 (18)
42.22(19)
42.26(19)
42.42 (18)
42.67 (16)
42.99(15)
43.38 (14)
43.81(15)
44.22(19)
44.46 (36)

(A) HAC with S= I, N=14.—For this system the re-
sults of the exact diagonalization method are given in
Ref. 7. In Fig. 1, B(K,z) is plotted for K=0, rr/7, 2z/7,
4'/7, and rr. In the case K=0 it is very stable and gives
the ground-state energy. For other momenta the error
bar increases exponentially as z increases. But B(K,z)
approaches Ei(K) even at zJ=I-2. We put I.=4096,
hz=0. 5/J, and r=8. We take the time average over

-12—,

-13—

i G.S

0

FIG. 2. El(K)/J for N=32, S= —,
' HAC. Circles are re-

sults of the Bethe Anstaz equation (Ref.-8). Bars are results of
the MC calculation. Length of the bar represents error of MC
calculation.

(20)lim [tE|(K) Ei (0)]=2[E|(x) E i (—0)] . —
K 0

This may be explained by regarding the low-momentum
excited state as a scattering state of two excitations with
momenta near z.

In summary I have proposed a new Monte Carlo
method which calculates the excitation energy as a func-
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(B) HAC with S= —,', N=32.—This system is too big

for exact diagonalization. But we can calculate Ei(K)
by solving numerically the Bethe-Ansatz equation as was
done by des Cloiseaux and Pearson. The results of the
PMC and the Bethe-Ansatz are shown in Fig. 2 and
Table I.

(C) HAC with S=1, N=32.—It is expected that the
system has an energy gap. Nightingale and Blote
(NB) determined the lowest energy of S'=0, 1, and 2
using the PMC method. In Table I we show Ei (K) ob-
tained by our method. In Fig. 3 it is compared with the
upper bound calculated in Ref. 10. El(0) is the ground-
state energy and Ei(rr) is the first excited energy. The
value of E1(rr), —44.45(36)J, coincides with NB's
lowest energy, —44.4364(40)J, in S'=1 subspace. The
energy gap is about 0.4J. It is noteworthy that the spec-
tra for the S= 2 and 1 cases are completely diA'erent.

The former has the shape c i sink i, while the latter has
the shape c(sin K+/ )'/ as was proposed in Ref. 10.
From Fig. 3 we find that spectrum is asymmetric about
the axis K =rr/2. So this is not correct in detailed points.
It seems that the gap at K =0 is twice of that at K =x:
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—42—

—43— 0

0
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0 0 spectrum satisfies the variational relation with the struc-
ture factor S(K) as shown in Fig. 3.

A part of this work was done at the University of Cali-
fornia at San Diego. I thank Duncan Haldane for hospi-
tality and stimulating discussions. Numerical calcula-
tions were performed with S-820 at the University of
Tokyo. This work was partially supported by a Grant-
in-Aid for Scientific Research on Priority Areas "Mech-
anism of Superconductivity" from the Japanese Ministry
of Education, Science and Culture.

0

FIG. 3. El(K)/J for N =32, 5=1 HAC. The spectrum has
a gap at K=z. The value of the gap is about 0.4J and coin-
cides with NB's calculation. Small circles are the upper bound
of Ei(K)/I given in Ref. 10. This upper bound was calculated
from the structure factor and variational relation.

tion of momentum. This method may be generalized if
the Hamiltonian has some other symmetry. " We are
able to get the lowest-energy state in each subspace if an
appropriate diagonal operator is found. By this method
elementary excitation spectra of the N=32 HAC with
spin & and 1 are obtained. The exact diagonalization
method is almost impossible for such long chains. The
result of the S=

& case agrees with the theory of des
Cloiseaux and Pearson. In the S=1 case the spectrum
of elementary excitations has an energy gap. The energy
gap is about 0.4J. This agrees with Haldane's predic-
tion and NB's numerical calculation. This excitation
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