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Suppression of Excluded-Volume Exponents in Shear Flow of Dilute Polymer Solutions
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The analogy between polymer and binary critical fluid dynamics in simple shear flow is used to con-
struct a renormalization-group analysis of the scaling exponent v for the end-to-end distance of an isolat-
ed long polymer chain in a good solvent undergoing strong shear flow. The shear flow induces a cross-
over from the usual fixed point with the good-solvent Flory exponent v to a new, strong-shear fixed point
with the classical exponent v= —, . Based on the blob picture we argue that the dynamic exponent z is

not afl'ected by the flow and remains at its zero-shear value z=3. Experimentally observable conse-
quences of this result are also discussed.

PACS numbers: 61.25.Hq

Experimentally observable properties (A1 of high-
molecular-weight polymers in dilute solution such as ra-
dius of gyration, diffusion constant, intrinsic viscosity,
etc. , obey scaling relations of the form

where M is the molecular weight and e is a scaling ex-
ponent that is independent of the local structure of the
polymer chain and its molecular weight but depends on
the quality of solvent. This dependence reflects the vari-
ation in the strength of the excluded-volume interaction
with solvent quality such that the exponent varies be-
tween its excluded-volume and ideal (phantom) chain
limits when the solvent changes from good to 8 solvent. '

Are polymer scaling exponents modified by externally
applied Aow? Experimentally, such modification was re-
ported for polymers in elongational Aow, where it was
observed that, independent of the quality of solvent, the
critical strain rate for the coil-stretch (CS) transition
scales with the inverse relaxation time of an ideal poly-
mer. In other words, it appears that the excluded-
volume effect is suppressed at the CS transition. Al-
though there were several attempts to explain this obser-
vation based on the suppression of excluded volume by
the stretching of the chain ' (blob model) and on the
role of inelastic effects at the transition point, the ad
hoc character of the explanations cannot be considered
satisfactory. Unfortunately, a more systematic analysis
of the phenomenon appears to be prohibitively difficult
since all fundamental theories which capture the univer-
sal features of high-molecular-weight polymers (this ex-
cludes dumbbell-type models) are based on the Edwards
Hamiltonian, e.g. , modeling the polymer as an elastic
chain, an approximation that breaks down at the coil-
stretch transition. This problem does not occur in simple
shear (planar Couette) flow where the coil-stretch transi-
tion is not expected to take place. Indeed, from the ex-
act solution, R /N a:(1+y N )/N, for the rms end-
to-end distance R of a Gaussian chain (in the absence of
excluded-volume and hydrodynamic interactions) in sim-

pie shear flow (SF), one concludes that in the range
N ' )) yTT&&1, where N is proportional to the poly-
merization index, y is the velocity gradient, and Tz ~ N
is the Rouse relaxation time of the polymer chain, one
can expect strong Aow effects on the global conformation
and dynamics of the polymer, well within the domain of
the validity of the elastic model. We emphasize that in-
elastic effects become important only when the velocity
gradients are large enough to affect the local conforma-
tions of the chains or, in other words, when the end-to-
end distance becomes comparable to the total length of a
fully stretched chain. In the following, we shall limit our
discussion to the elastic (Gaussian) regime, i.e., to chain
deformations well below full extension, for which the en-
tropic restoring forces of the polymer can be derived
from the Edwards Hamiltonian [Eq. (4)].

A renormalization-group (RG) analysis of SF effects
on the polymer conformation (end-to-end distance),
based on the coupled Langevin equations for the polymer
and solvent system (CLEPS) and including both hydro-
dynamic interactions and excluded-volume effects, was
carried out in Ref. 8. Based upon a perturbative calcula-
tion, to first order in m=4 —d, where d is the spatial
dimensionality, and to second order in the velocity gra-
dient y, combined with an estimate of some higher-order
(in y) contributions, the authors concluded that polymer
exponents (e.g. , the excluded-volume exponent v and the
dynamic exponent z) are not affected by the flow. Using
the RG terminology, this means that the fixed points of
the RG equations are not affected by shear and that one
can use the zero-shear fixed-point values of the ex-
cluded-volume coupling constant and of the friction
coefficient even in the presence of large velocity gra-
dients. Similar conclusions were reported for the
elongational-Aow case, for strain rates in the range
where the Gaussian model can still be applied. ' To the
best of our knowledge, there is no direct experimental
evidence that supports or refutes the above predictions in
the case of SF. The previously mentioned indirect evi-
dence against them in the elongational-flow case cannot
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be considered conclusive since the elastic-chain model
breaks down at the coil-stretch transition.

From a purely theoretical point of view, the conclusion
of Ref. 8 is rather surprising since, as is often the case in

polymer physics, the CLEPS model was constructed' "
using the analogy with dynamical critical phenomena
and one expects the dynamics of a polymer in SF to be
related to the problem of critical dynamics of a scalar
order-parameter field in SF. However, in the latter case,
it is known' that the presence of shear has a strong
eA'ect on the critical fluctuations of the order-parameter
field and that in the high shear limit the upper critical
dimension is reduced from 4 to below 3, leading to the
appearance of classical exponents in 3D. Since the
analysis of Ref. 12 is valid to all orders in the velocity
gradient y and since the examination of the deviation of
the new, strong-shear, fixed point leads to the conclusion
that it cannot be obtained by perturbative arguments,
the question of the modification of polymer exponents
cannot be resolved by a perturbative calculation in
powers of y. It should be emphasized, ho~ever, that the
analogy between polymer dynamics and critical dynam-
ics in shear should not be taken too far; the main

8c(z, t)
~

( 8H +~ ( )+g( )
t Bc z, t

(2)

where c(z, t) is the position of the zth monomer at time
t, gp is the bare monomer friction coefficient, and 8 is a
Gaussian random noise with zero mean and correlator

(e(z, r)e(z', t')) =2(p b(r (')B(z —z')1.

The Edwards Hamiltonian 0 is given by

(3)

diA'erence between the two problems is that because of
chain connectivity the polymer cannot be represented by
a scalar density field and furthermore, unlike the order-
parameter field, the polymer is not passively advected by
the flow. Thus, arguments based on the model of Ref. 12
cannot be directly applied to the polymer problem and
can only be used as guiding principles. With this in
mind we now proceed to analyze the question of polymer
exponents in strong SF.

Consider a polyiner in good solvent subjected to exter-
nally imposed SF with velocity gradient tensor I =yyx,
where the superscript T denotes the transpose of a ma-
trix. Neglecting the hydrodynamic interactions, the
polymer dynamics is described by the stochastic equa-
tion, '

r NO )NO+ —,
'

vp dz dz'S(c(z) —c(z') ), (4)

u) =up D(Q, O)up, (5)

where vp is the bare excluded-volume parameter, Np is
the bare number of monomers, and the integrals include
a short-distance cutoff'

~
z —z'~ & gp, where gp is the

monomer size, which eliminates the self-interaction of
the monomers.

In order to examine the modification of the excluded-
volume exponents in the presence of SF, we have to con-
struct an iterative scheme which will tell us how (he
excluded-volume coupling constant (i.e., the eff'ective

binary interaction coefficient) is aff'ected by the process
of renormalization which consists of coarse graining and
subsequent rescaling of the chain contour. ' The coarse
graining corresponds to regrouping g "bare" monomers
into one "dressed" monomer and gives rise to renormal-
ization of the binary interaction coefficient. Invoking the
analogy with the case of critical binary fluid mixtures, '

we assume that the one-loop correction to the dirnension-
less coupling constant up =vpL', where L is a phenome-
nological length scale, is given by the equation'

is the Fourier transform of the distribution function
Gp(z, R) for the end-to-end vector R of a chain of con-
tour length r, and

Q(z, 0) =&[c(z)—c(0)][c(z) —c(0)]),
where ( . ) denotes an average over the Gaussian ran-
dom noise 8, and the index 0 in the argument of D im-
plies that c is to be calculated neglecting the excluded-
volume contributions. Up to this point the analysis is
then quite general and relies only on the assumption that
Gp is a stationary Gaussian distribution function. Notice
that since Eq. (2) is linear (for vp=O), this assumption
holds even in the presence of arbitrarily large SF.

In equilibrium, y =0, vp =0, one readily obtains
Q,q(z, O) =(z/d)1 and, since to order e, the integral in
Eq. (6) has to be performed in d=4 dimensions, integra-
tion gives D(0,0) =(z lng which diverges logarithmic-
ally as g~ ~. Substituting into Eq. (5) and carrying
out the rescaling transformation' up u( u( g
& u(+ [ yields the recursion equation

Pg t g A,

D(y, O) =
d „d"k„dz„dz'Gp(z, k)Gp(z', k),

u(+( =u(+p(u()lng, p(u() =u(
2

u(

~2

Gp(z, k) =exp [——,
' k Q(z, O) k]

1«g«Wp. (6)

(7)

The trivial (u* =0) fixed point of the RG transforma-
tion u(+] u( leads to the classical exponent, v=0.5;
the nontrivial fixed point, u *=e(z /2, gives the ex-
cluded-volume exponent, v =0.5 (1+e/8).

In the presence of SF, solving Eq. (2) to all orders in y
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(«r Uo =0), substituting the solution into Eq. (8), and performing the averaging with respect to the random noise yields
the steady-state moment '

2 2 4

(g„(t,o)) =z I+ (r+r')+ r r' .
12 60

(10)

Performing the momentum integrations in Eq. (6), one obtains

Wg 8+g 1
D(y, o) ~ dz dz'

(z+z') [i+goy [7(z +z ) +12zz'(z+z') (z —z') l/720(z+z') l't

In the strong shear limit, yTR = yt",oNo/tr » 1, the

sequence of l RG transformations with l & l,
=in(y(o/tr )/2lng leads to the strong-shear fixed point
for which ygog '/tr »1, where y in Eq. (11) is rescaled
to yg

' '; thus, 1 can be neglected with respect to the
term proportional to y in the denominator in Eq. (11)
and the resulting integral converges in the limit g~ ~.
The disappearance of the logarithmic divergence with g
indicates that the excluded volume becomes irrevelant in

the strong shear limit and that one recovers the classical
exponent, v =0.5, irrespective of solvent quality.

What happens in the presence of hydrodynamic in-

teractions (HI)? In equilibrium, the main effect of HI is

to change the Rouse relaxation time T~ into the Zimm
relaxation time Tz= (6ztl/kT)g', where rl is the solvent

shear viscosity, g—=go¹is the Flory radius of the poly-

mer, and z =d is the dynamic exponent and where, to fa-
cilitate the comparisons with the blob model, ' we have

reintroduced the temperature T. In the case of the
excluded-volume effect, the same argument as above
leads to a similar conclusion: Excluded volume becomes
irrelevant in the strong SF limit, yTz&&1, and one ob-

tains v= 2 .l

Is the dynamic exponent z modified by strong SF? In
order to answer this question we resort to the blob pic-
ture according to which the effect of shear is negligible
within a blob of linear size g, =(kT/6trrly) 't', such that
the excluded volume is important only within individual

blobs. ' The foregoing RG analysis can be readily rein-

terpreted in terms of the blob model by saying that the
crossover to the new fixed point takes place at

I,'—:In(kT/6rrrty(o)/zvlng, such that g
' is just the num-I,'

ber of monomers contained in each blob. In order to un-

derstand what happens on larger scales we note that the
average length over which the hydrodynamic eff'ect is

still important in SF is gt,
= (rl/py) ', where p is the sol-

vent density. This length scale determines the transition
between the viscous and inertial regimes in the solvent

and is large compared to microscopic dimensions. For
macroscopically realizable velocity gradients the ratio

gt, /g, ~ (yt) 't' 't, where t is a microscopic time scale,
is much greater than unity (for z & 2), and we conclude
that the hydrodynamic interaction is eA'ective on length
scales much larger than the blob size. Moreover, since

gp/g rx'N' /yTz»1 for yTz»1 (but finite), we expect
that, within the range of validity of the elastic model, HI

remains unaffected by the shear over distances compara-
ble to chain dimensions. We conclude that the dynamic
exponent is not aff'ected by the shear, i.e., z =d even in

the limit of strong SF.
%'hat are the experimentally observable consequences

of our analysis? The suppression of the excluded-volume
exponents can, in principle, be observed in light scatter-
ing and birefringence experiments and in computer simu-

lations of high-molecular-weight polymers in good sol-

vents subjected to strong SF. Another candidate is the
intrinsic viscosity which decreases with y in the strong
shear limit (shear thinning' ). Although one cannot ex-

pect our results to be directly applicable to the above
problem, it would be interesting to study ratios of the in-

trinsic viscosities in good and 0 solvents as a function of
the velocity gradients, since crossover behavior is expect-
ed at yTz ~ 1. Further work along these lines is now in

progress.
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