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Ion Density Cavities Can Cause Nonlinear Plasma Oscillations to Peak

E. Infeld, ' G. Rowlands, and S. Torven
t "Soltan Institute for Nuclear Studies, Hoza 69, Warsaw 00681, Poland

t ~Royal Institute of Technology, l 0044 Stockholm, Sweden
' Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

(Received 2 December 1988)

In this Letter an exact solution for nonlinear cold-electron-plasma oscillations against a periodic ion

background is found. The main diff'erence with respect to the known solution corresponding to a uni-

form ion background is that, after a while, electron density peaks will appear. This phenomenon, which
was foreseen in general terms by Dawson, has possible practical implications which are indicated briefly.
A thermal limitation on the peaks is given.

PACS numbers: 52.35.Kt, 47.20.—k, 47.20.Ky, 52.35.Py

Periodic ion distributions are assumed in several plas-
ma contexts. For example, anomalous resistivity in tur-
bulent plasmas is not well understood. ' When the
weak-turbulence collision frequency is less than the elec-
tron cyclotron frequency, the electron motion is essen-
tially one dimensional. For this case it proves difficult to
obtain appreciable anomalous resistivity from the weak-
turbulence theory. To resolve this difficulty, a strong-
turbulence theory was presented in Ref. 4. An array of
ion density cavities was assumed.

In the auroral region, electrostatic ion cyclotron waves

may also give rise to density cavities. Computer simula-
tions have been looked at in this context.

In computer simulations for plasmas with periodic ion
density cavities it is usually assumed that the ion distri-
bution remains constant in time. Simulations indicate
the formation of strong electric field gradients. These
have also recently been observed in the aurora.

In this Letter we look at a simple exact solution for
cold-electron-plasma oscillations against a periodic ion
background, assumed constant on the time scale of the
electron motion. We find the salient features of the
above-mentioned observations and simulations, ' most
importantly a steepening of the electric field gradient
caused by the presence of the ion cavities.

The problem of nonlinear cold-electron-plasma oscilla-
tions against a uniform ion background was solved many
years ago by several authors simultaneously. They
found oscillations with the electron plasma frequency
to~ =(4nnpe /m, ) 'I . Thus the frequency was amplitude
independent. In general (unless the initial conditions
were especially tailored such that at the onset the ampli-
tude of the oscillations was at least 2 of the background
density) the electron density was not found to exhibit ex-
plosive behavior. A good reference for this solution is
Chapter 3 of Davidson's book. However, Ref. 7 gives a
heuristic argument for wave breaking (infinite densities)
when the ion background is not uniform.

Plasma oscillations under the inAuence of an applied
sinusoidal field have been considered by several au-

thors. ' The forcing term is usually assumed small.
Enhanced electron density was obtained. The situation
beyond breaking was considered by mathematical
methods that are not universally accepted (such as alter-
ing Poisson's equation, changing the sign of the density
when it becomes negative, etc.). Nevertheless, a theory
of pump energy conversion to the plasma is obtained in
the first of these references.

In a recent paper, " Infeld and Rowlands generalized
the exact cold-plasma solution to a relativistic plasma.
For small co~,/ck, where 2tt/k is the wavelength, the non-
linear oscillations described above were of course
recovered for a while. However, after a number of oscil-
lations proportional to (ck/co~, ), the density was found
to peak. Thus general initial conditions were found to
lead, after a while, to infinite electron density at a point
(in practice a sequence of electron density bursts was to
be expected). Large electron density was of course ac-
companied by large electric field gradients. Whether the
time scale required for these "relativistic bursts" was
practical or not depended on the parameter (ck/cop, ) .
The only exception to the above behavior results from
the very special initial conditions that lead to a Bern-
stein-Greene-Kruskal wave.

In the present paper we solve the problem of nonrela-
tivistic, cold-electron-plasma oscillations against a fixed
periodic ion density background. In view of the above
considerations, it is physically interesting that electron
density bursts are found here too, although not surpris-
ing in view of Ref. 7. Thus an exact nonlinear solution,
of interest in its own right, seems to be useful for com-
parison with computer simulations and, perhaps, with
auroral observations.

In the calculation we assume the ion density to be time
independent and space periodic. We take

n;(x, t) =n [1+pas(cko)],xa & 1,
and a uniform initial electron density

n, (x,O) =np.
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BE/Bx =4tre (n; —n, ),
yielding

(3)

This will give an initial electric field. To find it we use
Poisson's equation

and an auxiliary function y:
f T

y=J v dz, xp=x y, (7)

The coordinate xo follows a fluid element in its motion.
Our equations simplify in the new coordinates to

E(x,O) =4trenpak ' sin(kx) . (4)

Here a possible uniform component of E is taken to be
zero, as is the initial electron velocity v, (x,0). The field
(4) created by local charge inbalance will drive the sys-
tem in a nonlinear mode.

The equations for the electron density n, and velocity
v, are, in the fluid model of a cold plasma,

(B/B z) [n, (1+By/Bxp) ] =0, By/B. =.,
Bv,/B z = —eE/m, ,

BE/B z = +4tzen; v, .

The first equation can be integrated to yield

n, =n, (xp, O)/[ I +By/Bxp] .

(9)

(io)

Bn,/Bt+B(n, v, )/Bx =0,
Bv,/Bt +v, Bv, /Bx = —eE/m, .

Equations (3), (5), and (6) give a complete description
of the plasma.

We now introduce Lagrangian coordinates xp, z, '

The second and third equations, (9) and (10), can be
combined to yield

B y/B z + ro, [1 +a c os (k j x + yj ) ]By/B z =0 . (12)

Upon integrating twice and using the initial conditions,
we obtain

(By/Bz) = —ro, y +2aro, k [cos(k[x +yj) —cos(kxo)].

We can rescale the variables, introducing p=ky, z=cop, z, x =kxp, to obtain an exact solution in simple parametric
form. It is, in terms of n, and Eulerian variables x, t, interpreting the integral in (15) such that t increases monotoni-
cally (see also Fig. 1),

kx =x —p,

rap, t =„"dy'/[2a[cos(x+ rtp') —cosxj —y' ],
n =np/[1+ By/Bx 1,

(i4)

(is)

FIG. 1. Phase-plane solution curves (p;, p) for chosen values
of kxo indicated in the figure. Here a =0.3.
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Bp/Bx =a[2ajcos(x+p) —cosxj —
P ] ', , g & sin(x) —sin(x — ')

(i7)
[2a[cos(x+ p') —cosxj —p'] t

This is indeed an exact solution in parametric form x =x(x,p), t =t(x, p), n =n(x, p). Note how very much simpler it
was to obtain than those found by the ubiquitous inverse scattering method. However, as is often the case, some
features of the solution are more simply seen by methods other than plotting the exact solution (14)-(17).

Two features of this exact solution will now be needed:
(1) The motion of each individual Iluid element, labeled
by one xp, is periodic. (2) The period of the motion T is
a function of xp (this is in contradistinction to the cold-
plasma, uniform-ion-background case, for which T=2tr/
pe ).

zr /2 3zr /2 Both features are seen from the figures. Figure 1

7r/4 77T/4 shows curves in phase space corresponding to the solu-
3zr/4 57'/4 tion and given by (13) for chosen xp. If all curves for

l O, zr, 2zt kxo between 0 and 2x were drawn, they would fill in the
two regions. (These curves are not quite elliptical. ). To
follow the motion of one fluid element, labeled by given
xo, through one period, we go around the corresponding
phase curve once. Both p; and p are thus periodic func-
tions of time provided T is finite. We now simply calcu-
late T(xp) numerically by taking (15) up to the zero of
the denominator. The result is shown in Fig. 2. Indeed
T is seen to be a (nonconstant) finite function of xp. As
stated above, p, and hence y, is a periodic function of z,
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n=0. 3
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FIG. 2. Each fluid element, labeled by xo, oscillates with its
own period T. Dependence of T on xo for a =0.3.

but the period depends on xo. We can write this as

ter= y(xo, z/T),

where the period in the second variable is now one. Thus

B~/Bx. =B&/Bx, —(./T')(BT/Bx, )&,
where the prime denotes differentiation with respect to
the second argument. As y' goes through both signs, the
secular component will sooner or later cause the denomi-
nator in (16) to vanish. Thus, for some finite time z, n,
becomes infinite. We see from (3) that this will also
cause BE/Bx to become infinite. Without the periodic
ion background, BT/Bxo is zero and this explosive behav-
ior is not seen. [The secular component can also be seen
in (17).j This is the effect mentioned in Ref. 7, and our
general Eq. (17) gives Eq. (22) of that reference.

Figure 3 shows lines of constant xo in (x, t) space.
Bursts appear whenever these lines coalesce.

Whenever the model predicts infinite n, it must give
way to a more complete physical description. Presum-
ably this would lead to large but finite n, and BE/Bx,
which would then subsequently relax. After a while, our
model could once again be used with different initial con-
ditions and would give a second burst. Thus we predict
that a periodic ion background will cause a sequence of
bursts in n, and BE/Bx to appear in the plasma. This
could be an example of intermittency in plasma physics.

A small-amplitude calculation, including a small elec-
tron thermal effect in (6), but no longer exact as the
above considerations were, gives aconite-amplitude burst
in n, after a time Tb.

Tb =2+K(1/J2)/kXD(yiz) '

Here E is the complete elliptic integral, XD is the Debye
length, y=c~/c, , and a is now assumed small. This for-
mula was derived by expanding in both the electron tem-

6sr

FIG. 3. Lines of constant xo for a=0.3. These lines are
seen to coalesce at (roughly) cop, r =77r, leading to bursts.

perature (in kXD) and in a; see the penultimate refer-
ence in Ref. 12 for a somewhat similar expansion.

As mentioned above, the electron density no longer
has to become infinite and its maximum, attained at t
=Tb, 1S

This is finite and positive when XD ) a / /ky'/ . Thus to
limit the bursts the electron temperature must exceed a
critical value. (On the other hand, if it is too large the
bursts will not appear at all. )

We suggest that further observations and simulations
should be aimed at finding a definite and widespread
correlation between the occurrence of ion cavities and
electric field steepening as predicted qualitatively by
Dawson and quantitatively by our exact solution. In the
small-a limit our formula for Tb could also be checked.
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