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Information Theoretical Characterization of Turbulence
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A method of describing turbulence in terms of dynamical connectivity in the wave-number space is

proposed. The connectivity is quantified by the information theoretical quantities, i.e., mutual informa-
tion and cross information flow rate. The method is applied to the analysis of two simple examples of
turbulence in one spatial dimension. Although the examples have quite different physical origins, the in-

formation structures of the wave-number space turn out to be quite similar: The wave-number space
consists of several regions generating information in different ways, and how information flows between
these regions reflects the dynamical structure of turbulence.

PACS numbers: 47.25.—c, 05.45.+b

Much effort has been made to describe the complex
dynamical behavior we call chaos. Several methods have
been proposed and applied to characterizing chaotic be-
havior quantitatively. ' However, all methods proposed
so far are only applicable when the dimension of the
chaotic attractor is not very large. In order to reduce the
dimension of chaos, experiments are usually made in

carefully controlled artiftcal environments. However,
most chaotic behavior observed in natural environments
will be more or less high dimensional as typically
exemplified by fluid turbulence. Unfortunately, we do
not have an efficient method to describe high-dimen-
sional chaos which seems to have a more natural oc-
currence. The aim of the present paper is to show an at-
tempt to characterize very-high-dimensional chaos ac-
companied by homogeneous spatiotemporal variation.

For spatially homogeneous turbulence the wave-
number space (Fourier space) is of fundamental impor-
tance: Mathematically, the Fourier basis can confine the
chaotic attractor most efficiently in the following sense.
Consider an orthogonal basis tel, ez, . . . , e„,. . . j. Let S„
be the subspace spanned by je|, . . . , e„f. If the motion
of the system represented by the state vector R is homo-
geneous in the real space, then the deviation of R from
its projection onto S„can be made minimum on average
by choosing (e|,e2, . . . l to be the Fourier basis. The
physical reason why we regard the wave-number space
as essential is as follows. A homogeneous turbulent
motion is first induced by an instability of Fourier modes
in a restricted region in the wave-number space and it is
then sustained by the nonlinear mode-mode coupling
which suppresses the instability by forcing the energy to
flow toward the higher-wave-number region. Indeed, re-
cent study of very-high-dimensional chaotic motion ac-
companied by strong spatiotemporal mixing reveals that
the scheme of motion in the wave-number space depends
on whether Fourier modes contribute actively to chaotic

motion or not. The above considerations say that the
connectivity of dynamics in the wave-number space,
which directly reflects how chaotic information is gen-
erated and transmitted, is of fundamental importance to
the description of turbulent motion. Our idea is to de-
scribe turbulent motion in terms of the dynamical con-
nectivity in the wave-number space, quantified by infor-
mation theoretical quantities.

How can we characterize the con nectivity in the
wave-number space in terms of information theoretical
quantities? For the sake of simplicity we consider spa-
tially one-dimensional stationary turbulence which is
homogeneous in real space. Suppose e(k, t) (t, time) to
be the time sequence of a physical quantity defined at
the position k in the wave-number space. To introduce
information theoretical quantities we first quantize the
value taken by e(k, t) into N levels. Simultaneously, we
regard time as discrete steps with the interval A. Then
we can represent the time sequence e(k, t) observed
during a finite period T=nh, by a discretized sequence
a = (al, a2, . . . , tt„), where a; is one of the N quantized
levels. Let P(a) be the probability that one of the se-
quences a in the N" possible states is realized. Then
H "i(k) = —Q,P(a)lnP(a) is the n-step Shannon en-
tropy for the sequence e(k, t) Next, consi. der a com-
bined set of two time sequences e(k„t) and e(k„,t) at
two diAerent positions k, and k, in the wave-number
space. Suppose P(a„a„) to be the joint probability that
e(k„ti) and e(k„,tz) take the sequences a, and a„ for
0 & t i ~ nh, and z ( t 2 ~ r+ nh, , respectively. Then the
n-step Shannon entropy for the joint process is defined
by

H " (k„k„ i r) = —g P(a„,a, )l P(na„, a, ) .
a„a,

The mutual information (MI) which represents the in-
formation carried in common by the two sequences
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e(k„t ~) and e(k„,tq) is defined in terms of the two Shannon entropies, '

I " (k„k„ i r) =H " (k, )+H " (k, ) H—(" (k„k„ i ) (~ 0) .

The MI takes the minimum value zero if and only if the two sequences e(k'„t &) and e(k„,t2) are statistically indepen-
dent. It measures the amount of connectivity between two sequences. On the other hand, the rate of increase of the MI

K(k, :k„)=lim j lim [I" (k„k„~ r) I " —' (k„k„~ r)]/6) (~0),
0 n

(2)

dy(t)/dt = —y(t)+ pf(y(t —l)), (3)

with f(y) =cos(y —ttp) (pp, constant) and l standing for
the system size. The DD equation can be regarded as a
discretized mapping rule from a "spatial" pattern at
time n (n, integer), i.e., y(x, n):—y(nl+x) (0~ x & l)
to y(x, n + I ). Hereafter we follow this description.
The second example is the Kuramoto-Sivashinsky (KS)

which no longer depends on the time lag r, is called the
cross information fIow rate and is the rate of common in-

formation generated in the two times sequences per unit
time.

Using these information theoretical quantities we
demonstrate how the connectivity in the wave-number
space is characterized for simple examples of turbulence.
The model systems we examine exhibit spatially one-
dimensional turbulence with a very-high-dimensional
chaotic attractor. The first example is the delay-
diA'erential (DD) model of optical turbulence,

t
model of chemical turbulence,

y, (x, t) = —y (x, t) —y „(x,t) —y„(x,t)y(x, t), (4)
with the periodic boundary condition y(x+1, t)
=y(x, t) Le.t y(k, t) be the Fourier transform of
y(x, t). Then the Fourier spectrum, i.e., the long-time
average of

~ y(k, t) ~, observed for the turbulent states
of our system has the following features: It has a notice-
able peak at k =kp (kp=0 for DD and kp= I/J2 for
KS) and decays exponentially beyond a certain wave
number kd ( & kp).

In applying our information theoretical method out-
lined above it would to be quite natural to choose

~ y(k, t)
~

as e(k, t). However, instead of
~ y(k, t)

~
it-

self, we choose an average of
~ y(k, t)

~
over a finite

band k ~ k' ~ k+ 6k, i.e.,
k+ak

e(k, t) = Z Iy(k', t) I',
k'=k
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FlG. ]. information maps (i) DD model (p =1.3, 1=40) and (ii) KS model (i=128), where and indicate kg and ko, re-

spectively, and y corresponds to the position of the source k, at r =0. The C and D regions are indicated by ~ and 1, respectively.
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because we are concerned with the average behavior in

the vicinity of a given k.
In Figs. 1(i) and 1(ii) we show the "information

map,
" i.e., the contour plot of MI I ' (k„k„~r), ob-

tained for the turbulent states of the DD and KS models,
respectively. We show how the pattern of MI over the
"receiver's" spacetime (k„,r) changes as the "source" k,
is moved toward the higher-wave-number side in the or-
der (a), (b), (c), . . . . The positions of the two charac-
teristic wave numbers kn and kd are indicated by
arrrows. Although the two models have quite diferent
physical origins their information structures are quite
similar: There are three regions of k, in which the infor-
mation map exhibits quantitatively diff'erent patterns.
We call these three regions the core region, the inter-
mediate region, and the dissipative region, respectively.
The core (C) region forms a narrow band surrounding
k, =ko, whereas the dissipative (D) region corresponds
to the high-wave-number domain roughly k, & kd. Thus
C and D regions are separated, and the remainder of the
wave-number space is occupied by the intermediate (I)
region.

Now let us read the information map. When k, is in
the C region the pattern of MI spreads most widely in

the wave-number space [Figs. (i-a), (ii-b)]. In particu-
lar it spreads over the D region with large amplitude.
Moreover, for all k„ in the D region the maximum of MI
appears with the same delay after the MI maximum at
the source k, . This implies that there is a flow of infor-
mation from the C region to the D region. However,
there is a "gap" region to which information does not
flow from the C region. This region corresponds to the I
region.

The strong connection between the C and D regions is
more evident when k, moves into the D region. A most
remarkable characteristic for k, F (D region) is that the
MI pattern is delocalized in the D region [panels (d), (e)
in Figs. (i) and (ii)]. Therefore, the motions in the D re-

gion are strongly correlated. The MI has significant
magnitude in the C region as well. The time when the
MI has the maximum is the same for all k, in the D re-
gion and it is delayed from the time when the MI takes
the maximum at k, e (C region). This means that the
inffuence of the dynamical events occurring in the C re-
gion propagates and emerges in the D region after a de-
lay time. In short, the origin of motion in the D region is
in the C region. In the case of KS the MI is periodic
with period ko for k„E (D region), which indicates non-
linear coupling of k, with the source ko. Thus the D re-
gion does not generate information by itself and belongs
to the "exterior" of the attractor. The strongly corre-
lated emission of intermittent bursts observed in the D
region is responsible for such a behavior.

In contrast to the D region the MI pattern is localized
when k, is in the I region [(b),(c) in Fig. (i) and (a), (c)
in Fig. (ii)]. The I region is isolated from both the D
and C regions. These features are very noticeable for the
DD model, and a similar behavior is seen for the KS
model as well. The dynamics of different modes in the I
region clearly generate information independently. This
fact implies that the C region corresponds to the sub-
space which is actively generating chaotic information.
Indeed the Lyapunov spectrum analysis reveals that the
"interior" of the attractor, i.e., the subspace spanned by
the Lyapunov vectors whose numbers are less than the
Lyapunov dimension, is contained in the subspace
spanned by the modes in the C and I regions. Thus the
I and C regions roughly correspond to the interior of the
attractor.

The characterization by the cross information flow
rate (CIFR) introduced by Eq. (2) provides a more com-
pact summary of the information structure of the wave-
number space. We show in Fig. 2 a plot of contour lines
of K(k, :k„) [=K(k„:k,)] obtained for the DD model.
The relations between the three regions discussed above
are quite obvious from this plot. A defect of this method
is, however, that it cannot describe the direction of the
information flow, which is easily judged from the MI
map. Thus the characterizations by the MI and by the
CIFR complement each other. These methods can be
applied to analyze experiments in which Fourier analysis
data may be obtained. Dye-laser optical turbulence is a
possible candidate. It is of interest how the cascade
propagation of energy and/or vorticity in ffuid turbulence
is described by our method. The study along this line is
being developed.
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FIG. 2. Contour plot of the cross information flow rate. See
the text.

See, for example, articles in Dimensions and Entropies in
Chaotic Systems, edited by G. Mayer-Kress (Springer-Verlag,
Berlin, 1986).

2267



VOLUME 62, NUMBER 19 PHYSICAL REVIEW LETTERS 8 MAY 1989

2K. Ikeda and K. Matsumoto, J. Stat. Phys. 44, 955 (1986);
Physica (Amsterdam) 29D, 223 (1987).

C. E. Shannon and W. Weber, The Mathematical Theory
of Communication (Univ. of Illinois Press, Urbana, 1949).

4The rate K—:[H, +~(k) —H, (k)]/6 is the Kuramoto-Siva-
shinsky (KS) entropy if the quantization forms a generating
partition [V. I. Arnold and A. Avez, Ergodic Problems of
Classical Mechanics (Benjamin, New York, 1969)l. A rein-

terpretation of the KS entropy as the information flow rate is
due to R. Shaw, Z. Naturforsch. 36a, 80 (1981).

sK. Matsumoto and I. Tsuda, Physica (Amsterdam) 26D,
347 (1987); J. Phys. A 21, 1405 (1988).

6Y. Kuramoto, Prog. Theor. Phys. 56, 679 (1976); see also
Ref. 2.

Optical Instabilities, edited by R. W. Boyd et al. (Cam-
bridge Univ. Press, London, 1985).

2268


