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Optical Nonlinearities of Excitonic Self-Induced-Transparency Solitons: Toward
Ultimate Realization of Squeezed States and Quantum Nondemolition

Measurement

K. Watanabe, H. Nakano, A. Honold, ' and Y. Yamamoto
Nippon Telegraph and Telephone Corporation, Basic Research L,aboratories, Musashino-Shi, Tokyo 180, Japan

(Received 20 December 1988)

Self-induced transparency in a resonant two-level system creates a 2n-soliton pulse, which produces
large optical nonlinearities with a very fast response time and an extremely small loss. The self-phase
modulation of a 2n soliton and the mutual-phase modulation by the collision of two 2z solitons in the ex-
citonic range of the spectrum in CdS can achieve an eA'ective g coefficient of 10 to 10 esu for a
pulse duration of 1 to 3 ps. The quantum theory of 2z solitons predicts this new nonlinear process can
realize squeezed states and quantum nondemolition measurement 20 dB below the standard quantum
limit.

PACS numbers: 42.50.Qg, 32.90.+a, 42.50.Dv

Optical nonlinear processes can be divided into two
categories: non resonant coherent and resonant in-
coherent. ' lf a field frequency is well detuned from the
atomic transition frequency, the response time is fast and
the absorption loss is negligible, but the g coefficient is
usually small. On the other hand, when the field fre-
quency is close to the atomic frequency, the g coef-
ficient is enhanced, but the response time becomes slow
and the absorption loss is high. These tradeoff's between
the g coefficient and the response time or the absorp-
tion loss impose a serious limitation on both nonlinear
optical switches in classical optics and squeezed-state
generation and quantum nondemolition measurement in

quantum optics. This Letter demonstrates the possibili-
ty of new optical nonlinearities based on the resonant
and coherent coupling between the field and the atoms.

Suppose the pulse duration z is much shorter than the
energy and phase decay time constants T&, Tz and the
area A =(pq~/A) JEdt of a secant-hyperbolic shaped
pulse is a multiple of 2x. Here p2~ is the atomic dipole
moment and E is the electric field envelope. The pulse
propagates without being absorbed irrespective of the
pulse frequency detuning from the atomic frequency and
the inhomogeneous broadening of the atomic frequen-
cies. This is a so-called 2z soliton. The Maxwell-Bloch
equations for self-induced transparency (SIT) can be
solved by the inverse scattering method formula. The
2'-soliton solution is uniquely determined by the com-
plex eigenvalue g =a+iP of the inverse scattering
(Zakharov-Shabat) equations. The field envelope func-
tion for the 2tt soliton, except for an exp[i(rvot kpz)]
term, is expressed as
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The phase shift (3) represents the self-phase modulation

Here 0 =tvnpz~/2AE, I=Bono i's the dielectric constant,
n is the atomic density, v =c/no is the nonresonant light
velocity, a=(cv —coo)/2v represents the nonlinear fre-
quency shift, and co is a real soliton frequency. The
pulse height P is proportional to the photon number Np,
i.e. , P=ropq~N~/16@v eAt, and determines the pulse
duration z= 1/2Pv. Here Ap is the cross-section area of
the pulse. If the line-shape function of the atomic sys-
tems is assumed to be a delta function 8(co —

coal~), then
the coefficients xp and rc~, the group velocity V, and the
phase shift p are written as
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g„1f is zero both on resonance m =co2~ and far from res-(3) .
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=1/z, and is proportional to p2~, n, and z .
If two 2x solitons collide, i.e., a slow soliton is overtak-

en by a fast soliton, the soliton phase is scattered accord-
ing to

P2+Pi
pq =2 tan
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of the 2z soliton, and the eA'ective g coefficient for
self-phase modulation is evaluated by comparing (3) to
the self-phase modulation of a normal rectangular pulse
of duration z,
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The subscripts 1 and 2 refer to the two solitons. The self-phase modulation term (3) is not included in (5). If the fre-
quency difference of the two solitons exceeds the inverse of the soliton pulse duration, t col —co2t » I/z1, 1/z2, the
mutual-phase modulation 8&2/'dpi =p2ico/2(coi —co2)@veep is much larger than the other contributions 8&2/BN12,
c)p2/Bal, and 8p2/Ba2. The mutual-phase modulation is not dependent on the frequency detuning from co|2, but is only
dependent on the frequency diff'erence coi —m2. The interaction length z,p, in which the two 2z solitons pass through
each other, is given by

(1/PI + I /P2) 2v [(coi —co21) '+ I/rl'1 [(co2 —co21)'+1/r2]
Zeg (rl+ r2)
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The mutual-phase modulation increases with decreasing
t col —co2 t, but the interaction length also increases. The

effective g coefficient for mutual-phase modulation is
evaluated by comparing 8&q/BN~i to the mutual-phase
modulation between two normal pulses for the same in-

teraction length z,g,
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g „t„,. i is not zero even on resonance m2=m2i, where g„if(3) ~ (3)

is zero. This is the important feature of SIT solitons for
optical switching and quantum nondemolition measure-
ment applications, because the phase shift is only depen-
dent on the other soliton's photon number.

If the atomic system has finite Tt and T2 constants,
the 2z soliton suA'ers from energy loss. " The soliton
pulse duration r has to be much smaller than
T, =(2T| '+T2 ') ' in order to allow the absorption
loss to be small. When the energy loss is small, the
energy-loss coefficient is approximated by

1 ncop2) r
&eff
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Next let us consider the SIT solitons in the excitonic
range of the spectrum in semiconductors. A free exciton
propagating in the same direction as the light interacts
coherently with the electric field of the light forming a
mixed excitation of both, a so-called polariton. Howev-
er, zero-dimensional bound excitons trapped by impuri-
ties cannot propagate, and they can be considered as
static "atoms. " In such a case, 2x solitons are produced
very efficiently, because the bound excitons feature large
dipole moments and long-decay-time constants.

An exciton bound to a neutral donor (the I2 line) in
CdS at 2 K has an absorption peak wavelength of
X =487 nm, a Ti time constant of 135 ps, a T2 time con-
stant between 40 and 270 ps, an exciton density of
n=1 x10 ' m, and an oscillator strength of fo=26,
that corresponds to the dipole moment p2i
=e(foA/2m, co) 'i =1 x10 Cm. When the beam ra-
dius r is 30 and 0.1 pm, the photon number and the peak
power to produce the 2x soliton of 1-ps pulse duration
are 5.0&10 and 200 %' and 5&10 and 2 mW, respec-
tively. In Fig. 1, the g„|fcoefficients versus the frequen-
cy detuning co —m2i are plotted. For the above men-
tioned CdS sample with pulse durations of r =1 and 3 ps
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FIG. 1. The eAective g coefficient defined by the self-
phase modulation for 2n solitons in CdS with the exciton densi-
ty n= la ' m (solid line) and n —102' m 3 (dashed line) vs

the angular frequency diAerence between the soliton frequency
co and the exciton frequency m2i. The parameter is the pulse
duration r. g is shown in terms of cgs units, which is ob-
tained from Eq. (4) times 8. 1 x10's.

t
the maximum g,(,lf values of 10 and 10 esu are ob-
tained at hen, ~t =10' Hz and 3&10"Hz. If the exciton
density is increased to n = 1 x 10 m, which is still
well below the maximum density determined by the exci-
ton Bohr radius, the maximum g„tf values are 10 and
10 esu with the pulse durations 1 and 3 ps, respec-
tively. In Fig. 2, the g „t„,|coefficients versus the fre-
quency difference co1 —co2 of the two 2n solitons are Iilot-
ted. Here we have assumed co2 =co21. The gm«„, 1

3)

coefficients are of the same order as the g„1P coefficients.
From (8) the energy-loss coefficient is a,s =1.39 cm
for v=1 ps, Ti =135 ps, T2=270 ps, and n=10
The value often used as a figure of merit for g /ar for
nonlinear materials is 10 esucm/s.

Two-dimensional excitons in quantum wells, where the
light is propagating perpendicular to the layer, can also
be considered as static "atoms. " An exciton in a 12-
nm-thick GaAs quantum well at 2 K has an absorption
peak wavelength of 806 nm, Ti time constant of 180 ps,
Tz time constant of 12 ps, exciton density of n =2x10'
m, and oscillator strength of 15. The values are lim-
ited by the imperfections in GaAs crystal and interfaces.
By solving the relations between fo, Tt, T2, and the
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quantum operator equation. At the optimum detuning
hco, ~t for the self-phase modulation, the minimum quad-
rature noise is expressed as
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FIG. 2. The eAective g coefficient defined by the mutual-
phase modulation in the collision of two 2x solitons in CdS
with the exciton density n=10 23m 3 (solid line) and n =10 '

m (dashed line) vs the angular frequency difference between
the signal soliton frequency col and the probe soliton frequency
cv2. The parameter is the pulse duration r.

coherence area A, (Ref. 8) self-consistently, we obtain
T~ =18 ps, Tq=36 ps, and f =o108 for a perfect sam-
ple. The maximum g coefficient is about 10 esu
and the energy-loss coefficient is about 86.7 cm ' for a
1-ps pulse.

Finally let us consider squeezed-state generation and
quantum nondemolition measurement using 2x solitons.
A quantum mechanical description of pulse propagation
requires the definition of modes. One may employ either
the Fourier modes defined by the wave number and the
time or the local modes defined by the position and the
time. However, neither set of modes are normal modes
for the coupled Maxwell-Bloch equations. The pulse
propagation in a two-level atomic system must be de-
scribed by complicated coupled multimode equations, if
these modes are employed. A 2' soliton (or inverse
scattering data, in general) is, on the other hand, a nor-
mal mode free from mode coupling. We can describe the
propagation of a 2n soliton by a single-mode theory, if
this normal mode is employed. In other words, the mode
function is given by sech(r —z/V) and the quadrature
component of this mode is detected by the homodyne
measurement with the same time-dependent local oscilla-
tor pulse.

Suppose we excite the 2x soliton in a coherent state at
z=0. The N~ dependence of the phase shown by (3)
causes quantum phase spreading. Classically, the self-
phase modulation and the dispersion balance exactly to
form a soliton with a fixed phase. Quantum mechanical-
ly, a coherent-state soliton consists of linear superposi-
tion of different photon number states, ' which have
different phase velocities and therefore diffuse in phase
space. This is similar to the "crescent squeezing" which
would occur for a normal pulse in a Kerr medium. "
The quadrature noise is calculated by the linearized

The pulse duration r is defined for the average photon
number &N~). If we assume the same numerical parame-
ters used in Fig. 1, the quantum noise is reduced by 20
dB below the standard quantum limit at the distance of
400 and 4 pm for n=10 ' and 10 m, respectively,
and v=1 ps. The energy loss is 5% for T~ =135 ps and
T2 =270 ps. This is the most eKcient and fastest
squeezed-state generation scheme proposed so far.

Let us consider that the two 2x solitons are excited in
coherent states at z=0 and with an appropriate time
difference to achieve the collision. Since the probe soli-
ton phase is shifted in proportion to the signal soliton
photon number, the quantum nondemolition measure-
ment of the signal photon number is made by detection
of the probe phase shift. ' The normalized measurement
error of the signal photon number is written as

&~Np 1 )meas

&N„)'
(r02 ro~ ) z~

64&N»)
(10)

'
On leave from the M ax-Planck Institut fur Fest-

korperforschung, Stuttgart, Federal Republic of Germany.
'For a recent review, see D. H. Auston et al. , Appl. Opt. 26,

If we assume the same numerical parameters used in

Fig. 2 and co~
—co&=AN p$ 7f T2 1 ps, the measure-

ment error &dN~~)m„, is about 20 dB below the quantum
photon number noise &AN~~) =&N~~). If r =0.1 pm,
n=l0 ' m, z,s. =400 pm, and &N~2) =5X10 (2
mW), &dN~~)'~„, is as small as 10 . This is the most
efficient quantum nondemolition measurement scheme
proposed so far.

In conclusion, we have demonstrated the possibility of
new optical nonlinearities using SIT solitons in the exci-
tonic wavelength region in semiconductors. The propa-
gation and the collision of 2z solitons give large g
coefficients with a very fast response time and an ex-
tremely small loss. These nonlinear coefficients are the
largest among various coherent and fast nonlinear pro-
cesses in semiconductors and organic materials. ' The ex-
perimental difficulties of producing a squeezed state and
demonstrating a quantum nondemolition measurement
can be overcome by this new scheme.
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