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Fragmentation of Stretched Spin Strength in Si
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Calculations have been made to explore the effect of configuration mixing in a large basis on the frag-
mentation of the "stretched" M6 strength in Si. Our work extends a previous calculation, which al-
lowed a single particle in the f7t2 orbit and the remainder in the (unrestricted) 1dst2 and 2s&t2 orbits, by
also allowing up to four particles in the 1dy2 orbit. It is found that configuration mixing within this ex-
panded basis gives an improved description of the spectrum and several other properties of the observed
states.

PACS numbers: 21.10.Re, 21.60.Cs, 23.20.3s, 27.30.+t

The past decade has seen the accumulation of an ex-
tensive collection of experimental data ' concerning
"stretched" particle-hole states in nuclei. These states,
for the even-even nuclei typically studied, have negative
parity and total angular momentum 1=jp+ jp which is
the fully aligned sum of the maximum possible hole and
particle angular momenta, jp =lp+ 2 and j~ =Ip+ 2 in

the valence shell and the shell lying immediately above
it, respectively. In Si, the nucleus of interest here,
these are 6 states. What makes such states most in-
teresting is that, of the many thousands of configurations
with this spin and parity in a 1@co basis, only the
stretched configuration lfqt2ldst2' can contribute to a
one-step M6 transition from the ground state. As a re-
sult, inelastic scattering measures the distribution of this
unique configuration among all the 6 states. Interpre-
tation of the inelastic-scattering data is simplified be-
cause this M6 excitation is mediated by a single spin
density which provides a common source (albeit multi-
plied by a probe-dependent interaction strength) for the
cross section measured in electron, nucleon, and pion
inelastic-scattering reactions. '

Experiments with the above probes give consistent re-
sults for the spin strength attributable to the stretched
configuration. ' ' The observed strength is typically a
small fraction of the strength expected for pure particle-
hole excitation —generally less than 3 for isoscalar exci-
tations and less than 2 for isovector excitations. It is
this depletion of strength we wish to understand. For
magnetic transition of lower multipolarity, particularly
M1 and Gamov-Teller transitions, calculations indi-
cate that non-nucleonic degrees of freedom such as the h,

give important contributions to the transition matrix ele-
ments and convection currents enter to complicate the
analysis of scattering data. When realistic interactions

are employed, these same models ' indicate only small
corrections to stretched transitions due to 6 degrees of
freedom and core polarization. Furthermore, the core-
polarization corrections tend to be nearly identical for
T=O and 1 excitations, ' as emphasized in Ref. 5.
Thus it is expected that valence-configuration-mixing
effects are primarily responsible for the observed de-
pletion of stretched spin strength. Because of this,
stretched transitions provide an ideal laboratory for an
acute test of the shell model. It will be shown that the
shell model passes this test.

Initial studies of this problem using the shell mod-
el'' ' were only able to explain about half of the de-
pletion of strength, with the exception of studies of
stretched 4 states in p-shell nuclei where the small
basis size allowed full (0+1)@to calculations. The chal-
lenge is to extend these results to the s-d shell (and
beyond) so that systematic comparison can better test
the model. In the only prior shell-model study in the s-d
shell, Amusa and Lawson' (hereinafter to be called
AL) examined the effect of limited configuration mixing
on several aspects pertaining to the single-particle transi-
tion ldsiq~ If7g in Si. Liu and Zamick' have made
related studies using the rotational model with Coriolis
mixing. In the work of AL, the zero-order (pure
particle-hole) prediction is based on the (ldgq) '

(Id5l2) "(If7tq) transition. By adding the Istl2 level

to this zero-order model, AL showed significant improve-
ment in the inelastic-scattering cross sections and spec-
troscopic factors for the lowest T=O and 1 6 state and
the B(M1) transition rate between them. However, AL
noted a discrepancy between their findings and the ex-
perimental limits on the full spectrum of 6 strength
determined from pion and electron scattering. With
respect to all of this, AL conjectured that additional im-
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provements could be efIIected by further enlarging the
model space to include the 1d3y2 level to some degree.

In this Letter we report the results of carrying out just
such a project, having in fact performed calculations in

the basis (d5j2, sij2) '' "d3jif7jq with up to n =4 allowed
This contains 75% of the 6 states in a full (sd) ''f7j2
basis, and thus gives a good measure of the results to be
expected from full (0+ I ) irido configuration mixing in s-d
shell nuclei. Since our goal was mainly to observe the
eAect of changing the basis size in the s-d-shell part of
the problem, we use the Shiff'er-True' spin-dependent
central interactions as AL to connect the s-d and f
configurations, and compare the results that AL obtained
with n=O and the Wildenthal, McGrory, Halbnert, and
Glaudemans' eff'ective Hamiltonian appropriate to the
dsj2, si j2 space to those with n ~ 4 and the Wildenthal'
effective Hamiltonian for the full s-d shell. (Initial
checks indicate that the relatively small truncation in the
d3y2 orbit does not have large eA'ects on the problem; we
will publish results for the full s-d-shell calculation in a
future paper. ) Like AL, we adjust the f7j2 single-
particle energy to give the correct excitation energy for
the yrast 6 T=0 state.

Since our central concern is with the depletion of
strength seen in inelastic scattering, we are interested in
matrix elements

ZT &~,—,I I &To(f7j2 dsj2) I I +s. &

(reduced in spin space only) of the operator'

'4T, T, (Jjr Ji ) =
~aj~mf, (, &j m;i, ~ T, T, , (2)

for the full spectrum of 6 states in Si. In this expres-
sion, a creates a particle, a annihilates one, and the
square brackets indicate coupling to the total angular

momentum 6 and isospin T with the usual factors to en-
sure the proper rotational properties.

The simplicity of the stretched states guarantees that
the inelastic-scattering cross section is proportional to
ZT, but the large number of possible states (about 60000
in our basis) makes it impractical to solve for all of the
eigenstates of the model system. The Lanczos algorithm
provides a convenient alternative, since it obviates the
need to pursue a full diagonalization in this space but, as
Whitehead' has shown, still gives a description of the
distribution of strength as a function of energy accurate
to the 2Nth moment after N Lanczos iterations. This al-
gorithm also converges fastest for the lowest-lying states,
so we get "sharp" states for the yrast T=O and 1 levels
observed experimentally.

The specific procedure is to first get a good ground
state for Si within the (relatively small) s-d-shell basis.
Then we form the "collective vector" for the 6 state
of isospin T defined by

IzT& =&T';o
I +ss&, (3)

which contains all of the M6 strength in this basis and
thus determines Z=(gT IgT&, a "sum rule" which mea-
sures the reduction in strength due to depletion of the
d5j2 orbit in the ground state. (This method is simplest
to use for an I=T=0 ground state such as we consider
here, where we also have that Z is independent of T )By.
choosing the erst Lanczos vector to be the normalized
collective vector, we can directly and cheaply compute
Z from Z and the coefficient of this vector (a clear mea-
sure of its fragmentation) in each pseudoeigenvector at
any stage of the calculation. The eigenvectors for the
observed states are formed at the end of the sequence of
iterations so that we can also calculate such things as the

TABLE l. Measured properties of the observed 6 states in Si compared to results from
the simple model (f7j2d/)2), the AL model (f7y2[dsj2sij2] ") from Ref. 13, and this work. Note
that the full sd space would give 29908 T=0 states and 53637 T =1 states.

Observable

11.71 MeV (T=O)
ZT2

C 5
14.36 MeV (T=1)
ZT
C2+

T =1 T=O transition
8(M 1) (e fm )
AF (MeV)

Basis size
6 T=O
6 T=1

Sum rule Z

Simple model

1.0
0.5

1.0
0.5

0.162
0.70

1

1

1.0

AL

0.258
0.206

0.522
0.368

0.073
1.4

95
144
0.854

This work

0.203
0.156

0.374
0.234

0.052
2.65

21 653
40 386
0.785

Expt.

0.14+ 0.04'
0.21 ~ 0.03b

0 33+ 004'
0.20+ 0.02

0.031 +- 0.004'
2.78

'Average of Refs. 1-3, 5, and 22 with appropriate error estimate.
Average of Refs. 23 and 24 with appropriate error estimate.

'Reference 25.
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FIG. 1. The curves show the strength function for inelastic
scattering calculated by AL (dashed curve) in a d5i2, sly basis
(Ref. 13) and in this work (solid curve) after allowing up to
four particles in the d3g2 orbit compared to "data points"
representative of the observed scattering strength. The error
bar on the data point in the T =0 part of the figure is skewed
so as not to obscure the curves behind it.

spectroscopic factor for stripping to these states and the
8(M1) transition rate between them. All calculations
were done with the vLADIMIR system of codes ' adapted
to the CYBER-205 and ETA10 computers at Florida
State.

Table I and Fig. 1 show the result of our calculation
after 24 Lanczos iterations for each isospin compared to
the AL results. ' Following the Livermore approach,
the curves in Fig. 1 are based on the strength of Z for
the individual eigenstates spread by a Gaussian of width
((H —(H)) )'i or 100 keV, whichever is larger. This
curve is proportional to the inelastic-scattering cross sec-
tion at the peak of the angular distribution. These
curves are to be compared with the "data" points derived
from the experimental strengths and energies of the ob-
served states as described in Table I. The energy of the
yrast 6 T =0 state is a free parameter in both calcula-
tions, so one should focus on the improvement in the
splitting between the T=O and 1 states and the essential
elimination of inelastic excitation of several low-lying
T =0 states, which are strong enough in the AL calcula-
tion to have been observed by existing experiments, but
were not. The eA'ect of configuration mixing in the
larger basis is to push the missing strength farther up in

energy and spread it over many states. This is the mech-
anism which leads to a single yrast state with a small
fraction of the total strength while the bulk of the
single-particle strength remains unobserved. It is also
significant that these eA'ects are greater on the T=O
states. This is the key result, emphasized in Ref. 5, that
cannot be obtained in core-polarization models with real-
istic forces. '

Following Amusa and Lawson, we also look at other
features of these states to further judge the model. In
Table I a number of measured properties of the 6
states in Si are compared with the prediction of the
simple valence picture, the AL calculation, and the
present results. One observes that there is general im-

provement as the basis space is increased. Clearly a
large basis with configuration mixing is the essential ele-
ment required to explain the details of the reduced
strength observed for stretched magnetic transitions in

the middle of the s-d shell. Diminishing returns from the
efort to expand the basis are also evident. The full s-d-
shell calculation mentioned above should lead to some
additional improvement. Schmid's work for the
positive-parity states in Si, with much larger model
spaces and a diA'erent interaction, gives Z=-0.57 which is
consistent with this assertion. Finally, the core-
polarization corrections, which enter at the 10%-20%
level, provide a small additional source of strength de-
pletion.

There are a couple of limitations on our results that
should be noted. The spuriosities of the lowest T =0 and
1 6 states are 0.7% and 0.8%, respectively; however, we
cannot remove spurious components in the rest of the
spectrum without significantly expanding the basis. Ad-
ditionally, the experimentally observed states are slightly
unbound, and the resulting change in the wave functions
would aA'ect both the M6 strength calculation and the
matrix elements that enter our Hamiltonian. Proper in-
clusion of continuum eA'ects is an important open prob-
lem. Nonetheless, our approach has the advantage of
giving us the spectrum of f7i2dsi2 strength which is the
principal experimental observable.

In summary, fragmentation of the "stretched" state
via conventional configuration mixing provides, within
the slight limitations of our model space, a clear explana-
tion of the observed properties of 6 states seen in in-
elastic scattering from Si. We plan to extend our work
to the other nuclei in the s-d shell. Early results appear
promising. Eventually we intend to explore the eAects
produced when we expand the basis to include the full,
unrestricted sd basis and add the fg2 orbit to the space.
The experimental challenge is to devise means of using
spin observables to map out the full strength distribution
even when it is otherwise obscured by background states.

Special thanks go to Rob Hausman for providing a
copy of VLADIMIR and assisting in the initial conversion
to the Cyber-205. This work was supported by the Flori-
da State University Supercomputer Computations Re-
search Institute which is partially funded by the U.S.
Department of Energy through Contract No. DE-FC05-
85ER250000, and by LLNL through Contract No. W-
7405-ENG-48.
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