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Three-Body Forces and the Description of Light Nuclei
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It is shown that a schematic three-body force in addition to a general two-body force leads to a strong-

ly improved description of the energies of A =4-16 nuclei. The values of the two strength parameters of
the proposed three-body force, which are obtained empirically from energies and static moments of p-
shell nuclei, are found to be similar to those of a realistic three-nucleon force.

PACS numbers: 21.30.+y, 21.60.Cs, 27. 10.+h, 27.20.+n

The nature of three-body forces and their significance
for the shell-model description of various properties of
A & 3 nuclei are still unclear. In practically all shell-
model calculations performed so far the interaction is re-
stricted to contain effective one- and two-body terms
only. However, one should expect that many-body forces
contribute as well. The main reason is that the correc-
tions to a two-body force, which are required to compen-
sate for configurations which are excluded from the mod-
el space, give rise to many-body terms in the resulting
effective interaction. Moreover, it may not be excluded
that nuclear forces do not contain a realistic three-body
part.

The usual restriction to a two-body interaction is

based on the assumption that effects of many-body forces
can be absorbed largely in an effective two-body interac-
tion. However, there are some problems associated with
the restriction to effective two-body interactions only.
For the A =18-40 nuclei it is found empirically that a
uniform mass dependence, i.e., all matrix elements of the
effective two-body interaction are multiplied by a factor

, is needed in order to obtain a good description of
sd-shell levels. ' Such a mass dependence may well origi-
nate from excluded many-body effects, since any two-

body force yielding matrix elements with a linear mass
dependence is equivalent to a three-body force. On the
other hand, not every three-body force can be interpreted
as a two-body force with a linear mass dependence. In
the p shell the large radii of Li and Li indicate that the
single-particle orbits are mass dependent, which leads to
a nontrivial mass dependence of the one- and two-body
matrix elements. Changes in these orbits may therefore
be reflected in an effective three-body force (when one
uses a Hamiltonian with mass-independent strength pa-
rameters).

We will show below that a uniform mass dependence
of the effective two-body interaction gives only a margin-
al improvement for the A =4-16 nuclei, whereas the in-
clusion of a rather simple three-body force largely
reduces the deviations between experiment and theory.
The problems encountered when a two-body force is used
for the description of light nuclei are mainly concentrat-

ed in the A =6-8 nuclei. Some authors therefore even
discarded levels in these nuclei from their fits. On the
one hand, one may thus argue that levels in these light
nuclei are not very suitable for a simple shell-model
description and should not be used to determine an
eff'ective two-body interaction. But on the other hand, it
is interesting to investigate whether these levels are espe-
cially affected when (effective) many-body forces are in-
cluded in the shell-model Hamiltonian.

In the past some attempts have been made to include
three-body interactions. Nash investigated Gaussian
three-body forces and their effect on states with max-
imum spatial symmetry in He, Be, ' C, and ' O.
However, he did not perform shell-model calculations.
In the work of Goldhammer, Hill, and Nachamkin the
three-body interaction is based on the second-order
eff'ects of a pure two-body tensor force. They obtained
large improvements compared to the results of Cohen
and Kurath, but could not reproduce the low-lying reso-
nances in Be, even if a schematic four-body force was
included. Dirim, Elliott, and Evans obtained an
effective three-body interaction from the Sussex interac-
tion with perturbation theory, but did not try to optimize
their interaction. They noticed that the three-body in-
teraction energy for ' 0 should be about +12 MeV.
This follows directly from the binding energies of mass 4,
5, 15, and 16 nuclei and from the assumption that only
nucleons in the p shell are active.

In this work we investigate the need for a three-body
force, in order to improve the description of A =4-16
nuclei in a p-shell model space. The calculations have
been performed with the Utrecht shell-model program
R ITSSCH I L. This general shell-model code treats
many-body operators essentially the same way as one- or
two-body operators.

The Hamiltonian 0 used is split into four parts corre-
sponding to the zero-, one-, two-, and three-body parts of
the effective interaction, i.e.,

The parameters specifying 0 are considered to be mass
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and state independent (except in the case where we in- 0 62
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eluded a term A in H ). The zero-body part repre-
sents the energy of the He core. The one- and two-body
parts are most generally expressed in the 2 single- (a)
particle energies and the 15 two-body matrix elements,
respectively. The most general parametrization of the
three-body part 0 leads to 51 three-body matrix ele-
ments. Not all these parameters can be determined ac-
curately by the available experimental data. Therefore
we searched for a schematic three-body interaction with
only a few parameters. Optimal values for all parame-
ters are determined by means of an iterative least-
squares-fit ting procedure to experimental data. This I I I

selected set of data is essentially the same as used in our
previous work. This means that the binding energies
of ground states and excited states as well as the (avail- FIG. l. (a) The rms deviation for energy levels vs the pa-
able) static moments of some 75 levels with normal pari rameter k in the mass-dependent term 2" multiplying all two-

ty, i.e., ( —1) re taken into account. The static rno- body matrix elements. (b) The rms deviation for energy levels

ments are inc u e in t e fit since they considerably im vs the range Parameter P of a Gaussian three-body interaction.
All other parameters are optimized.prove the accuracy of some parameters in the Ham~ltonj-

an, which are rather poorly determined by a fit to energy
levels only.

First, we restrict ourselves to calculations without a three-body force. Similar to the work of Wildenthal and Brown
we investigated the effect of a mass-dependent multiplication factor A for all two-body matrix elements. It is shown in
Fig. 1(a) that optimal results are obtained for A, = —0.18 leading to an rms deviation for energy levels AF-, ,=0.55
MeV. However, the improvement is not significant compared to the result obtained with X =0, since the latter yields
h,E„,=0.59 MeV.

VP „„(r~,r2, r3) = exp — [(r~ —R) +(r2 —R) + (r3 —R) ] (2)

The center of mass of the three nucleons is denoted by
R. The normalization is such that for 6 =1 the matrix
element for the i Os ) state is unity, independent of the
value of the range parameter P. In the extreme short-
range limit, i e , with. .the range parameter P~0, this
force becomes equal to a three-body 8 force, whereas in
the extreme long-range limit, i.e., P=1, this yields a
term proportional to (A —4) in the Hamiltonian. In
Table I we present analytical expressions for the matrix
elements of VP,„„. These three-body matrix elements
depend only on the spatial symmetry [f] and the orbital
angular momentum L„but not on the spin 5, the total
angular momentum J, or the isospin T. Matrix elements
between states with different [f], L, or S vanish. A vari-
ation between 0 and 1 of the parameter P does not lead
to significant improvements; see Fig. 1(b). It is seen that
a pure three-body 8 force, i.e. , P =0, gives almost no im-
provement at all over the results with the mass-inde-
pendent two-body interaction.

Now we will show that much better results can be ob-
tained with a three-body force of the following structure:

V~'c-=g(W ja)-a2, a, . a3i jr( r2, i, r,j-
cycl

+C[a(. cr2, a). o3] [r). r2, r). r3] ) .

TABLE I. Three-body matrix elements for VP~„„(with
G=I).

[fl

[3J

l31

[2I]
[21l

[I I I]

&p'[flLS i Vip'[flLS)JT

+ 9 +
+ —, p-
+ —, p+

P'+ P'
p2+ p3

fP'+ 9P'
3P'+3P'

i
The summation runs over the three cyclic permutations
of particles 1, 2, and 3. The j, i and [, ] denote an-
ticommutators and commutators with strength parame-
ters 3 and C, respectively. The spin- and isospin-ex-
change terms correspond to those arising from the ex-
change of two (pseudoscalar and isovector) pions, so that
the structure of this force is similar to that of the two-
pion-exchange three-nucleon force first proposed by Fuji-
ta and Miyazawa. ' The differences are the absence of a
two-body tensor force in the spin (anti)commutators and
the replacement of all radial functions in front of the
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TABLE I I. Three-body matrix elements for V)3'.

[3]

[2I]
[2I]
[2I]
[I»]
[I I I]

&p'[f]Ls i
v

i p'[f]L,s)»
—364 + 144C

+ 122 —144C
—128
—12M

+ 60M + 144C

+ 122

a; e~ terms by unity. Results are found to be rather in-
sensitive to such a radial dependence since all active par-
ticles occupy p-shell orbits. The anticommutator term in
(3) can be written as a linear mass-dependent two-body
force. ' ' However, this does not hold for the commutator
term.

In Table II the analytical expressions for the matrix
elements of Vz c are presented. Note that in contrast to
the three-body Gaussian force the matrix elements do
not depend on L, but on S and T. Like the three-body
Gaussian force, this one also contains only diagonal ma-
trix elements and it is a central force, i.e., its matrix ele-
ments do not depend on J. A fit of the two parameters A
and C, together with the eighteen parameters of the most
general zero-, one-, and two-body interactions, leads to
the three-body matrix elements presented in the fifth
column of Table III.

The most general diagonal central three-body interac-
tion in our model space is characterized by ten parame-
ters, since in the p shell ten three-particle states with
diA'erent [f], l., S, and T exist. A fit of these ten param-
eters, instead of the two parameters A and C, leads to
the matrix elements presented in the last column of
Table III. Note that the two sets of matrix elements in
this table are remarkably similar.

The energy levels have deviations AE, , =0.38 MeV
and hE, , =0.36 MeV for the two- and ten-parameter
cases, respectively. Both numbers are considerably
smaller than those obtained without a three-body force;
i.e., hE„,=0.59 and 0.55 MeV for the optimum mass-
independent and mass-dependent two-body interactions,
respectively [see also Fig. 1(a)]. Most impressive there-
fore is the result obtained with the two-parameter three-
body force Vz p for which we present some results.

The contribution of the three-body interaction to the
binding energy of the ground states for a number of p-
shell nuclei is presented in Fig. 2. In our model space
the three-body interaction can contribute only to 3 ~ 7
nuclei, since it requires at least three particles in the p
shell. One observes from Fig. 2 that the effect of the
three-body force is attractive for A & 11 and repulsive
for A ~ 11.

The negative three-body energy for the Li and Be
ground states can easily be understood. Their calculated

TABLE III. Empirical values of the three-body matrix ele-
ments (MeV); 2P stands for two parameters, etc.

lf]

[3]

[.3]

[21]

[2I]
[2I]
[2I]
[2I]
[2I]
[I I I]

[I I I]

V),c
(2P)

—0.83
—0.83

+ 1.16

+ 1.16

+0.17

+0.17

+0.17

+0.17
—2. 15
—0.17

Central
force (IOP)

—0.93
—0.79

+0.71

+ 1.08

+0.38

+0.14

+0.13

+0.24
—1.62
—0.37

wave functions are almost completely symmetric in the
spatial coordinates of the p-she]] nucleons. Hence in Li
the three-body energy is about equal to the value of the
[f]= [3] three-particle matrix element, i.e., —0.83 MeV.
In Be the three-body energy for the spatial symmetric
state is even 4 times as large. For the heavier nuclei the
wave function necessarily is of mixed symmetry and the
positive [fl = [21] three-body matrix elements contribute
as well. The result is that the three-body energy for the
ground states gradually increases from A =8 to A =16.

With only the two-body interaction we calculate the
four lowest states in Li, and find that all of them have
predominantly symmetry [f]=[3], on the average 0.8
MeV too strongly bound, whereas the three lowest levels
in Be are calculated to be on the average 0.8 MeV too
weakly bound. With the inclusion of the three-body
force these systematic discrepanceis are both reduced by

I I I I I I I I I I I I I

e He6Li Li g ge P ~P C ~C 4N g 0
Nuc leus

FIG. 2. Calculated three-body energy E3b and total binding
energy Eb for the ground states of p-shell nuclei with T, =0 or
T, =+ —, .
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a factor of 2. Also for A & 8 similar improvements
occur. However, the discrepancies seem to be much less
systematic than they are for the A =7 and 8 =8 nuclei.
Therefore the evidence for the three-body force comes
from nuclei throughout the p shell.

It follows from Table I that any Gaussian interaction
with 0 ~ P ~ 1 leads to three-body matrix elements
which all have the same sign. Hence such an interaction
can never produce a set of matrix elements similar to
those given in Table III. Apparently exchange terms,
leading to the negative signs of the [f] =[3] and [f]= [1 I 1] matrix elements and the positive signs of the [f]
=[211 matrix elements, are crucial ingredients for an
optimized eA'ective three-body interaction.

The two strength parameters of Vg g as determined
from our fit to energies and static moments in p-shell nu-
clei are given by A = —0.14 MeV and C = —0.009
MeV. It is interesting to point out the similarity in ratio
and sign between the present empirical values and those
obtained from a realistic three-nucleon potential such as
the Tuscon-Melbourne potential. ' If one drops the ten-
sor force and the radial dependence in this potential, one
obtains the same structure as (3), with strength parame-
ters A = —0.035 MeV and C = —0.018 MeV.

In conclusion, a schematic central three-body force
leads to a strongly improved description of energies in
the p-shell nuclei. The choice for the radial dependence
of this schematic three-body force appears to be rather
unimportant within the present model space. This may
not hold anymore for calculations in a larger model
space, where orbits with diA'erent radial dependence are

active. For other observables, e.g. , magnetic dipole and
electric quadrupole moments, one does not obtain large
improvements. However, in analogy with the present ad-
dition of three-body forces to the Hamiltonian, one
might expect significant improvements for electromag-
netic observables, if two-body corrections are added to
the one-body operators.
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